
Project Title Artificial Intelligence in Secure PRIvacy-preserving computing
coNTinuum

Project Acronym AI-SPRINT
Project Number 101016577
Type of project RIA - Research and Innovation action
Topics ICT-40-2020 - Cloud Computing: towards a smart cloud computing

continuum (RIA)
Starting date of Project 01 January 2021
Duration of the project 36 months
Website www.ai-sprint-project.eu/

AI-SPRINT Studio User Guide
Free version

www.ai-sprint-project.eu

AI-SPRINT Studio

2 www.ai-sprint-project.eu

AI-SPRINT Studio

Table of Contents

1. About AI-SPRINT 5

What problems can AI-SPRINT solve? 6

2. AI-SPRINT Framework 6

3. AI-SPRINT Application Architecture 10

3.1 Application DAG and Components 10

3.2 Candidate Resources and Deployments 11

4. AI-SPRINT Design Abstractions 13

Component Name Annotation 14

Execution Time Annotation 14

5. PyCOMPSs and dislib 16

6. OSCAR-P 18

7. SPACE4AI-D 21

8. SCONE 22

9. Getting Started 24

9.1 AI-SPRINT Studio Installation 24

Use the available Docker Image 24

Step 1: Pull the AI-SPRINT Studio Docker Image 25

Step 2a: Verification (AI-SPRINT Design) 25

expected output 25

Step 2b: Verification (TOSCARIZER) 25

expected output 25

10. Code Examples 25

10.1 Prerequisites 25

10.2 Build a New AI-SPRINT Application 26

Create a new application with the AI-SPRINT 26

Step 1 Run aisprint new-application 26

Step 2: Verification 27

expected output 27

10.3 Execute AI-SPRINT Studio 27

Step 1: Download the Mask Detection application (mask_detection_v1) 32

Expected output 33

Step 2: Run aisprint design 37

Step 3: Run TOSCARIZER 38

Step 4: Deploy Base Deployment 39

Expected output 40

Step 5: Run OSCAR-P 41

Step 6: Run SPACE4AI-D 49

11. AI-SPRINT Runtime environment 58

3 www.ai-sprint-project.eu

AI-SPRINT Studio

11.1 AI–SPRINT Monitoring Subsystem (AMS) 58

11.1.1 Infrastructure monitoring 59

11.1.2 QoS monitoring 60

11.1.3 Custom metrics 61

11.5 SPACE4AI-R 62

Installation 63

Output 63

4 www.ai-sprint-project.eu

AI-SPRINT Studio

1. About AI-SPRINT
The aim of the AI-SPRINT “Artificial intelligence in Secure PRIvacy-preserving computing coNTinuum” project
is to develop a framework composed of design and runtime management tools to seamlessly design,
partition and operate Artificial Intelligence (AI) applications among the current plethora of cloud-based
solutions and AI-based sensor devices (i.e., devices with intelligence and data processing capabilities),
providing resource efficiency, performance, data privacy, and security guarantees.

5 www.ai-sprint-project.eu

AI-SPRINT Studio

What problems can AI-SPRINT solve?

Table 1.1 Summarizes the AI-SPRINT framework end-users and problems solved.

Without AI-SPRINT With AI-SPRINT

Need to design manually
each component of the AI
application pipeline

Need to manage the
application parallelization

High-level QoS annotations and
automatically partition DNNs

Transparently implement the
parallelization of
compute-intensive applications

Need to manually configure
the environment

Qualitative appraisal of the
performance

Automatically containerize
applications

TOSCA templates for complex &
distributed applications

Automate AI application
performance profiling & design
space exploration

Naive autoscaling solutions

Basic DL scheduling
mechanisms

Not optimized energy nor
cloud operational costs

Advanced resource allocation
to cope with load variations

Optimized energy or cloud
operational costs and
energy-aware runtime

migration

Need to trust the cloud and
storage provider

Need to manually create
confidential docker images
and recompile binaries

Must manually encrypt files
and seal libraries

Trustable computing and
storage environments even on
untrusted providers

Quantitative anonymization
level

Table 1.1 - AI-SPRINT end users and problems solved

2. AI-SPRINT Framework
AI-SPRINT overcomes current technological challenges for the design and efficient execution of AI
applications exploiting resources in the edge-to-cloud continuum such as flexibility, scalability,

6 www.ai-sprint-project.eu

AI-SPRINT Studio

interoperability, security, and privacy. An AI-SPRINT application is mostly written in Python, and it makes
intensive use of AI technologies. An application usually comprises multiple components which run across a
computing continuum with some components allocated on the cloud, some on edge servers some on
AI-enabled sensors (i.e., devices with intelligence and data processing capabilities).

The objective of the AI-SPRINT Design Tools packaged as the AI-SPRINT Studio is to provide a layer that
abstracts the applications from the underlying computing resources, being these edge resources or cloud
servers deployed and managed by OSCAR1, so that the application developer only needs to focus on the
actual algorithm and application logic. On the other hand, interfaces for easing the integration of developed
applications with the runtime system are also available. The AI-SPRINT developer is provided with a
framework to design AI applications using abstractions to specify quality parameters and to express the
resource requirements of the components of AI distributed applications. Performance models are used to
predict execution times for the different parts of AI applications in a given deployment and to drive the
mapping of components on processing elements. Security policies are available in the definition of AI
applications to run on different deployments as edge resources or cloud premises.

Figure 2.1 - AI-SPRINT Framework

The design environment, shown in Figure 2.1, includes the following main components:

● Design and Programming Abstractions, to hide the communications across components and to
transparently implement the parallelization of the compute-intensive part of the application,
possibly exploiting specialized resources (e.g., GPUs and AI enabled sensors). The code developed in
AI-SPRINT is enriched with high-level annotations for QoS constraints and code dependencies, with
performance parameters for the allocation of tasks to computing continuum resources and with
security annotations for data allocation and processing. AI-SPRINT Design parses the application
code looking for the decorated functions, and generates a list of annotations together with the
corresponding parameters. Additionally, annotations to guide the partitioning of specific
components based on Deep Neural Networks, their early exit, and the support to multiple versions
of the same function with different accuracy are also provided. PyCOMPSs hides the
communications across components and transparently implements the parallelization of the
compute-intensive part of the application. Provides interoperability with several deep learning
environments such as PyTorch and the European Distributed Deep Learning library (EDDL). dislib
(part of PyCOMPSs) implements several ML algorithms reducing the execution time of the training

1 https://oscar.grycap.net/

7 www.ai-sprint-project.eu

https://oscar.grycap.net/

AI-SPRINT Studio

and inference processes by exploiting the inherent data parallelism of the input data. The input
dataset is distributed over a cluster, and each node performs the training on the local data. Models
trained in isolation are iteratively combined together according to a stochastic gradient descent
scheme. The distribution and execution of the operations are managed by the COMPSs runtime.

● The TOSCARIZER, which aims to provide TOSCA2 documents for the optimal and base component
placement to connect with the virtual infrastructure provisioning module. It generates the docker
images of all the application components, the TOSCA documents for each component for the target
resource, and the OSCAR FDL file for the whole inference pipeline. Finally, it triggers the virtual
infrastructure provision module (i.e., the Infrastructure Manager3) to create and destroy the virtual
infrastructures.

● The Infrastructure Manager - IM -, a TOSCA-based orchestrator that provisions customized virtual
infrastructures on multi-Clouds. These include widely used on-premises Cloud Management
Platforms (CMPs) such as OpenNebula and OpenStack; public Cloud providers such as Amazon Web
Services, Microsoft Azure, and Google Cloud Platform; European Cloud infrastructures such as the
EGI Federated Cloud and commercial providers such as Open Telekom Cloud and Orange.

● Tools that, once an AI application is designed, allow to automatically identify the Performance
Models providing the highest performance prediction accuracy, before the production deployment
or throughout revision cycles, under different configurations and deployment settings at the full
computing continuum. The AI-SPRINT performance modelling approach is mainly based on ML, in
particular, on the aMLLibrary4 library. For inference pipelines, Performance Models training data is
automatically provided by OSCAR-P, a tool which automates the profiling of an OSCAR application
by testing its full workflow on different hardware and node combinations, obtaining relevant
information on the timing of the execution of the individual components.

● Applications design space exploration tools that evaluate multiple alternative candidate
deployments for complex applications involving many components, and identify the resource
selection and components placement maximizing resource efficiency while minimizing the cloud
usage cost. SPACE4AI-D (System PerformAnce and Cost Evaluation on Cloud for AI applications
Design) tackles this problem by leveraging a random greedy algorithm coupled with several
heuristics, i.e., local search, tabu search, simulated annealing, and genetic algorithms.

● POPNAS which provides a machine-learning-as-a-service solution that automatically identifies the
most accurate deep neural network from a training set of labelled training examples (images or
time series) by trading off multiple metrics (training execution time, inference execution time,
model performance).

The main artifacts that are produced by the design time and that are also used by the runtime tools are:

● The TOSCA description of the optimal application deployment identified by the SPACE4AI-D tool,
which is used as input by the Infrastructure Manager to instantiate the required resources;

● The application components/partitions images that are built by TOSCARIZER;
● The application performance models that are used to predict the application performance on

unseen configurations and to trigger adaptation/scheduling decisions at runtime.

The AI-SPRINT runtime is automatically deployed with the application transparently for the end-user. The
application execution is continuously monitored at the full stack and, in case of performance violations and
periodically, resource allocation is re-optimized by SPACE4AI-R.

4 https://github.com/a-MLLibrary/aMLLibrary

3 https://www.grycap.upv.es/im/index.php

2 TOSCA is an OASIS standard language to describe the topology of cloud infrastructure.

8 www.ai-sprint-project.eu

https://github.com/a-MLLibrary/aMLLibrary
https://www.grycap.upv.es/im/index.php

AI-SPRINT Studio

In particular the runtime environment includes:

● OSCAR, a platform to support the serverless computing model for event-driven data-processing
applications along the computing continuum. The use of a minified Kubernetes distribution running
on ARM-based processors, such as those provided by Raspberry Pis, allows executing OSCAR
clusters for the inference in the edge of previously-trained deep learning models.

● SCAR, a framework to create Docker-based serverless applications in AWS Lambda with automated
delegation into AWS Batch. This approach combines the benefits of high elasticity provided by AWS
Lambda with the unbounded computing capacity provided by AWS Batch, allowing the creation of
data-driven serverless workflows typically aimed at file processing.

● The AI-SPRINT Monitoring Subsystem (AMS) which provides seamless collection, storage,
forwarding and analysis of time series data and logs in complex hierarchical multi-layer
deployments enforcing framework constraints and providing violation notifications. AMS enforces
AI-SPRINT framework constraints and, based on the results of the application data flow analysis, in
case of a constraint violation, sends a notification to the SPACE4AI-R REST API endpoint.

● SPACE4AI-R which determines a new optimal deployment for the production application, possibly
changing the current assignment of application components to resources and their configuration
according to the current load. In case of performance constraint violations or periodically, evaluates
the resources allocated and updates the configuration of the running application accordingly.

● Krake, an orchestrator engine for containerised and virtualized workloads across distributed and
heterogeneous cloud platforms using metrics and labels. It also provides the ability to create
Kubernetes clusters with third-party tools.

● The Privacy Preservation Component, a tool for training deep learning models that trade-off
accuracy and resilience to privacy attacks. It presents a distinct opportunity to ensure stringent
model privacy by employing various techniques, including differential privacy, regularisation, and
adversarial training

● Drift Detector, able to detect an AI model drift at runtime by identifying the drift of a user-defined
metric. During runtime, the accuracy of a production AI model is continuously evaluated by
monitoring a user-defined metric. If the metric undergoes drift during an observation period, as
detected by the user-provided detection algorithm, a drift alarm is raised. After the drift has been
detected, the AI-SPRINT user is notified, and additional data is gathered automatically and can be
used to retrain the model to adapt to the new data distribution.

● Federated learning solutions, AI-SPRINT facilitates the joint training of ML models across various
entities within the computing continuum, without necessitating the direct exchange of data. Within
this framework, traditional federated average is implemented by PyCOMPSs and, moreover, Secure
Generative Data Exchange - SGDE - has been developed to establish, amass, and disseminate
generators of data that are cognizant of privacy concerns. SGDE tackles the challenge of data
accumulation by enabling the training of data generators directly on edge devices, the primary sites
of data collection. These generators are trained following stringent privacy-preserving protocols,
ensuring that they are incapable of reconstructing any data that could compromise user privacy,
even in the presence of a malicious agent. Moreover, SGDE introduces a protocol for sharing these
data generators. This allows AI developers seeking data for specific tasks to access a repository of
data generators, from which they can create an extensive synthetic dataset. Such datasets can be
utilised to train machine learning models, circumventing direct access to sensitive real-world data.

● Scheduling solutions for accelerated devices, tools able to select the best VMs flavor, GPU types,
and GPU partitions to support the training of Deep Learning jobs, minimising energy or execution
costs, while meeting deadline constraints. The Scheduler manages the jobs, selects the nodes for
their execution, and assigning the GPUs to them.

9 www.ai-sprint-project.eu

AI-SPRINT Studio

Finally, AI-SPRINT applications can be also secured by SCONE, a framework that allows to transparently run
applications in Trusted Executions Environments (TEE) such as Intel SGX. Besides adding instrumentation to
leverage TEEs, SCONE also provides transparent file system encryption as well as secure communications.
Applications are attested to verify if the code is indeed executed in an enclave of a TEE and has not been
tampered with. In case the attestation succeeds, SCONE provides the applications with configuration as well
as reassurance that confidential information and private keys will never get into human hands.

3. AI-SPRINT Application Architecture
AI-SPRINT enables the design and deployment of ML-based applications through a well-defined set of
consecutive development stages. On the user side, the main actors are the application programmer and the
SysOp, which have to provide the code of the implemented application, as well as the set of configuration
files needed to the AI-SPRINT tools to perform the design and deployment. In particular, AI-SPRINT
applications must comply with the predefined structure reported in the diagram reported in Figure 3.1.

Figure 3.1 - AI-SPRINT Application Structure

3.1 Application DAG and Components
The dependency of components in our system is defined by the application Directed Acyclic Graph (DAG).
The application DAG description includes a list of vertices which shows the application components and a
list of edges that denotes the dependency between two application components. An edge is shown with a
tuple that includes source component, destination component and transition probability between source
and destination component. Consider an example application with two consecutive components. The
dag.yaml file is defined as follows:

10 www.ai-sprint-project.eu

AI-SPRINT Studio

DAG YAML file
System:

name: Example Application

components: [component1, component2]

dependencies: [[component1, component2, 1]]

3.2 Candidate Resources and Deployments
AI-SPRINT allows defining the resources that are available for running the application components. Given
the available resources, the user is enabled to explicitly associate each application component with a set of
candidate resources. Both the two kinds of information are provided by two separate files: the
candidate_resources.yaml file and the candidate_deployments.yaml file.

Candidate Resources

A system is characterised by a set of Network Domains that alternatively includes at least two
computational layers consisting of one or more candidate resources. The candidate_resources.yaml file,
which describes our system, includes a main section which is named NetworkDomains and it defines several
network domains with different network communication properties connecting devices with each other and
the technology of the underlying connection. All the computational layers located in the same Network
Domain can communicate together under the Network Domain’s connection properties.

In AI-SPRINT, the components of an application are deployed across different computing layers in a
hierarchical way, following the OpenFog Reference Architecture (RA). Each computational layer (an item in
ComputationalLayers) includes a list of candidate resources (Resources) such that one of them can be selected to
run the application components.

A computational layer can be either physical (and then we distinguish among the ones that are already
provisioned or have to be provisioned through IM), virtual (i.e., a public cloud VM image) or NativeCloudFunction

(in case of AWS lambda). This is specified in the type field. This concept is used at deployment time by IM
and at runtime by SPACE4AI-R such that if a layer is physical, the selected device at design time will not be
replaced by a different one at runtime. Vice versa, in a virtual layer, if all resources in the layer are switched
off (the layer is not in use), the SPACE4AI-R can select any of them and switch it on at runtime. On the
contrary, if a virtual layer is in use, SPACE4AI-R can only scale in or out the number of resources. Usually, the
edge and private cloud layers’ type are physical while public cloud type is virtual.

The candidate resources are characterised by some attributes, such as name, description, a list of processors
(processors), the total physical devices (in edge side) or the total number of VMs that can run on premises or
in the cloud side (totalNodes).

Base resources include attributes common to every resource in the computing continuum and are then
classified in Resources (further detailed in VirtualMachines, PhysicalNodes, and EdgeNodes) and FaaS. As an
example, a COMPSsNode is characterised additionally by the type of processor, the number of cores for
each processor, the internal cache and other user defined properties.

The field operatingSystemImageId defines the identifier of the Virtual Machine Image that will be used to deploy
the resource in a specific cloud provider.

Furthermore, resources are annotated if they support secure boot, i.e., if the BIOS provides and is enabled
for secure booting as well as if the operating system image used on the physical or virtual node supports
measured boot in order to fulfil the security constraints laid out by the application developer or user.

11 www.ai-sprint-project.eu

AI-SPRINT Studio

Resources can have one or more accelerators which have some attributes such as GFLOPS, powerDraw and
memorySize and each accelerator has its own processor(s). The attributes’ description of resources and
processors are brought to the following YAML input file structure.

Candidate Deployments

The candidate_deployments.yaml file allows to associate each component of the application with one or
more of the resources defined in the candidate_resources.yaml file. This is done by defining the Components

sections, where a list of Containers related to each component specified, as well as its compatible resources.
Each component (partition) has two attributes called candidateExecutionLayers and candidateExecutionResources

which denote a list of compatible computational layers and resources, respectively, on which the
component can run. Each component can run on the available resources as a container characterised by
some attributes like memorySize, computingUnits, to specify the required memory and the number of cores.
Moreover, regarding the security part, we provide three layers of protection and devise some binary fields
like trustedExecution, networkProtection and fileSystemProtection. trustedExecution ensures that data is stored,
processed and protected in a secure environment by memory encryption that relies on Intel SGX or
alternative technologies. networkProtection provides network shielding which means that if the application
communicates through an unsecure protocol (e.g., http), the connection will be encrypted by enabling this
field. Finally, if the storage provider cannot be trusted, by enabling the fileSystemProtection field, the files will
be transparently and automatically encrypted.

As discussed in Section 4 - Partitionable Model Annotation, Deep Neural Networks (DNN) based
components can be automatically partitioned by the SPACE4AI-D-partitioner tool in two segments, which
might vary depending on the layer where the cut is performed. The naming convention is
‘COMPONENT_NAME_partitionX_Y’ where Y can be 1 or 2 denoting the first or the second half of the
underlying DNN model. For what concerns the candidate resource specification the different versions of
partitionX_1 and partitionX_2 will be associated with the same resources, while they have their own section
defining the candidate execution layers in the candidate_deployments.yaml file.

The following Figure 3.2 reports an example of the information that is provided by the two
candidate_resources.yaml and candidate_deployments.yaml files.

12 www.ai-sprint-project.eu

AI-SPRINT Studio

Figure 3.2 - Visual example of the information provided by the candidate resources and deployments files. On the top the candidate
resources, as defined by the user in the candidate_resources.yaml file, while on the bottom the application components, each one
having a candidate computational layer (represented by the arrows), as defined by the user in the candidate_deployments.yaml
file. In the example the “Blurry Faces” component is partitioned into two parts, each one having its own candidate computational

layer.

4. AI-SPRINT Design Abstractions
Quality of Service (QoS) annotations provide the AI-SPRINT application developer with the capability of
specifying quality constraints to drive the deployment. Indeed, one of the objectives of the AI-SPRINT
design environment is to provide a layer of abstraction between the application that must be deployed and
the computing continuum, thus masking the management of the available resources to developers. At the
same time, QoS Annotations give enough control to the developer to constrain, during the implementation,
the allocation of resources in the cloud continuum. To this end, annotations are realised through Python
decorators that enrich the user code and simplify the definition of quality constraints from the developer's
perspective, which is only in charge of annotating the application components and, depending on the
annotation, of providing additional configuration files. Indeed, an AI-SPRINT application is to be intended, in
this context, as a set of Python components, for ML inference, whose execution is orchestrated by OSCAR.
In AI-SPRINT, each component is defined as a Python application, which can be any complex Python package
but must include a Python script with a main function. The latter is exactly the function that must be
annotated in the case quality constraints are needed. As a convention, in order to automatically detect the
main script of the component when running the AI-SPRINT tools, we require the script containing the

13 www.ai-sprint-project.eu

AI-SPRINT Studio

definition of the main function to be named as main.py. In the following, a description of the annotations
involved in the tutorial (Section 8) is provided.

Component Name Annotation
The first annotation provided by AI-SPRINT is component_name. It has the simple objective of providing an
easy way for the users to give a name to the components of an AI-SPRINT application. The name must be
unique for the components and allows to identify the specific component throughout the framework.
Indeed, all the AI-SPRINT tools identify the components based on their name. As for all the AI-SPRINT
annotations, it is realised as a Python decorator, which is used to annotate the main function of an
AI-SPRINT application component. The implementation is very straightforward since this annotation does
not execute any additional code when wrapping the component, but it simply serves as pure annotation,
which is parsed by the AI-SPRINT Design tool to associate to the component its user-defined name. In the
following, the annotation header is reported, while in Figure 4.1 an example of its usage is provided:

def component_name(name)

Figure 4.1 - Example of annotated component. The name of the component will be ‘example_component’ throughout the whole
application and will be used by the AI-SPRINT tools to refer to this specific component.

Execution Time Annotation
The Execution Time annotation, whose decorator is named as exec_time, allows defining time constraints,

i.e., upper bounds for the execution time of application components, which, besides guiding the design of

the deployment, will be monitored at runtime to detect any violation. The set of candidate resources will be

then skimmed at design time, by selecting (through SPACE4AI-D) those that should meet the desired time

requirements according to the performance models. In particular, the user can use the annotation to specify

a required execution time of a single or multiple components. In the AI-SPRINT perspective, this translates

into annotating the component with a Python decorator named exec_time, which takes as an argument the

maximum execution time required by the user. The decorator provides a wrapper of the annotated

component, by allowing the execution of additional Python code each time the component is executed.

Specifically, the exec_time decorator decollects runtime information and sends this information to the

AI-SPRINT Monitoring Subsystem (AMS), which stores the raw data and metadata, out of which execution

times are being computed, computes the monitoring metrics based on the defined time constraints, and

triggers SPACE4AI-R API functions in case of violation of such constraints.

The annotation header is the following:

def exec_time(local_time_thr=None,
global_time_thr=None,
prev_components=None).

The local_time_thr is the maximum execution time, measured in seconds, of the single component and

defines what is called a local time constraint. Supposing a component named ‘blur_image_component’ that

14 www.ai-sprint-project.eu

AI-SPRINT Studio

is required to run in no more than 20 seconds. The user is able to define this constraint by annotating the

main function of the component as shown in Figure 4.2.

Figure 4.2 - The main function of the component named ’blur_image_component’ has been annotated considering a local time
constraint of 20 seconds.

The global_time_thr is instead the maximum execution time required for the consecutive execution of

multiple components, which defines a global time constraint. Consider for instance an AI-SPRINT application

of two components. The use may require that the two components are executed in at most a certain

amount of time. This is shown in the example application in Figure 4.3. The figure highlights the two kinds

of time constraints. Local constraints refer to the maximum execution time of the single components, while

the global constraints refer to the maximum execution time of a group of consecutive components, that is,

an AI/ML inference workflow. For instance, the user could require a maximum of 30 seconds to both

anonymise the video and to provide the result of the mask detection algorithm. Furthermore, a distinction

is made between the execution time of the pure component function and the execution time measured

including the overhead due to the job creation.

Figure 4.3 - Visual explanation of the difference between job and function starting times, as well as the difference between local and
global constraints. The job starting time refers to the job creation time, while the function starting and end times refer to the

execution of the pure Python function implementing the component.

In general, local and global constraints can be combined. A single component may be subject to a local
constraint and, at the same time, be involved in a global constraint. Suppose an AI-SPRINT inference
application with 3 components C1, C2, and C3. Then, it is possible, for instance, to define at the same time:
a global constraint involving components C1, C2 and C3; a global constraint involving only components C1
and C2; three local constraints, one for each component (see Figure 4.4).

15 www.ai-sprint-project.eu

AI-SPRINT Studio

Figure 4.4 - Example of an AI-SPRINT inference application with 3 components C1, C2, and C3 subject to two global constraints and
three local constraints. The global constraints define a maximum execution time for both the C1+C2+C3 (15s) and the C1+C2 (10s)
computation paths. At the same time, the local constraints define a maximum execution time of 5s for each individual component.

5. PyCOMPSs and dislib
PyCOMPSs provides automatic parallelization of the application leveraging the user provided information
through input dependency annotations in the code (see Figure 5.1). The application developer provides a
sequential Python script whose functions are annotated through decorators; these annotations are used by
the runtime to run those parts of code as asynchronous parallel tasks code.
These annotations describe the type of parameters and constraints on the resources. PyCOMPSs also
provides a set of APIs to control the flow of the applications (fault tolerance and synchronisation points).
PyCOMPSs processes the information provided by the user through Python decorators and generates a
dependency graph.

Figure 5.1 - Design and execution of a COMPSs application

The Distributed Computing Library (dislib) is a Python library built on top of PyCOMPSs that provides
distributed mathematical and machine learning algorithms through an easy-to-use interface. dislib abstracts
Python developers from all the parallelisation details and allows them to build large-scale machine learning

16 www.ai-sprint-project.eu

AI-SPRINT Studio

workflows in a completely sequential and effortless manner. dislib is a subcomponent of the design tools
layer. dislib is a collection of PyCOMPSs applications that exposes two main interfaces to developers: 1) a
distributed data structure called distributed array (ds-array), and 2) an estimator-based API. A ds-array is a
2-dimensional matrix divided in blocks that are stored across different computers. Ds-arrays offer a similar
API to NumPy [Numpy2011], which is one of the most popular numerical libraries for Python. The difference
between NumPy arrays and ds-arrays is that ds-arrays are internally parallelised and use distributed
memory. This means that ds-arrays can store and process much larger data than NumPy arrays.
The typical dislib application consists of the following steps:
1) Load data into a ds-array
2) Instantiate an estimator object with parameters
3) Fit the estimator with the loaded data
4) Retrieve information from the estimator or make predictions on new data

As an example we consider the inference part of a dislib application; we have one component that in the
figure is called classifier that is executed a COMPSs agent service through OSCAR.

from aisprint.annotations import annotation

import subprocess

@annotation({'component_name': {'name': 'classifier'},

'exec_time': {'local_time_thr': 20},

'model_performance': {'metric': 'average_f1', 'metric_thr':0.5}

})

def main(input=None, output=None):

agent = start_agent()

subprocess.Popen(["/opt/COMPSs/Runtime/scripts/user/compss_agent_call_operation",

"--master_node=127.0.0.1",

"--master_port=46101",

"--lang=python",

"--method_name=predict",

"--stop",

"rf_predict",

str(input),

str(output)])

The previous code has to be provided src folder of the implementation together with the specific
implementation of the inference application and the trained model file.

from pycompss.api.task import task

import dislib as ds

from dislib.classification import RandomForestClassifier

from dislib.decomposition import PCA

@task()

17 www.ai-sprint-project.eu

AI-SPRINT Studio

def predict(in_file, out_file):

start_time = time.time()

print("Model was not loaded", time.time() - start_time)

pca = PCA()

pca.load_model("/opt/inference/pca_model", load_format="pickle")

RF = RandomForestClassifier()

RF.load_model("/opt/inference/rf_model", load_format="pickle")

print("Model Loading Time", time.time() - start_time)

x_test = load_n_preprocess(in_file)

x_test = ds.array(x_test, x_test.shape)

print("ECG Loading Time", time.time() - start_time)

print("Running PCA on ECG " + in_file, flush=True)

6. OSCAR-P
OSCAR-P is built around OSCAR and its components, and it acts as a director, configuring and coordinating
the profiling activities and collecting the required data once the profiling is completed. The aim of OSCAR-P
is to simplify and fully automate the testing of specific OSCAR application workflows on different hardware
configurations, and collect data to train machine learning performance models.

Specifically, OSCAR-P receives as input:

● a description of resources that needs to be tested, with a detailed overview of their hardware and
software architecture (the number of available nodes, the memory amount and number of cores of
every node);

● the components, their Docker images, and their hardware requirements (the needed memory
amount and number of cores of every single instance);

● a set of parameters specifying how to test the application (which input files to use, the number of
batches and their sizes, the time interval between uploads and their distribution). Moreover, for
every component, the parallelism levels to be tested (i.e., the maximum number of parallel
instances that a component is allowed to have) is also specified;

● the machine learning models to consider in the performance models training and their
hyperparameters.

The tests are performed by varying the used resources, either by changing the number of active nodes or by
changing one resource with another.

Once all the required resources are in place and correctly configured, the testing campaign is controlled by a
single YAML configuration file containing the list of services, the description of the clusters and their worker
nodes and information on how the application needs to be tested; this YAML file is paired with the results of
its associated run, to simplify debugging and allowing replicability. Every combination of hardware and
nodes is tested more than once to cope with execution time measurement noise and, after testing the full
workflow, the individual components are also tested on their own.

The profiling activities have to follow a precise sequence of steps (illustrated in Figure 6.1), each managed
by a separate OSCAR-P sub-component.

18 www.ai-sprint-project.eu

AI-SPRINT Studio

Figure 6.1 - Profiling activity steps and OSCAR-P sub-components.

Starting from the input files, OSCAR-P lists all the “testing units”, i.e., all the valid component / resource
tuples; if a component is partitioned (OSCAR-P supports also the execution of partitioned Deep Neural
Networks), all its partitions are considered as part of the same “testing unit”, thus ensuring that they are
always tested together.

As a simple example (see Figure 6.2), we can consider an application including a single component
(Component 1), which can be split in two partitions (Component 1.1 and Component 1.2) available for
different architectures (ARM64 and AMD64, respectively); Component 1 is instead available for both
architectures. The available resources include a cluster of Raspberry Pi (ARM64) and a cluster of Virtual
Machines (AMD64).

Figure 6.2 - Simple application example.

In this scenario, the testing units would be:

1. Component 1 on the RasPi cluster;
2. Component 1 on the VM cluster;
3. Component 1.1 on RasPi and Component 1.2 on VM cluster.

OSCAR-P then creates a list of all the possible deployments, that is all the possible combinations of the
testing units that amount to the full applications (see Figure 6.3).

19 www.ai-sprint-project.eu

AI-SPRINT Studio

Figure 6.3 - Deployments example.

Finally, every deployment contains a list of “runs” to be tested: each run includes the same list of
components, but the “parallelism” of each component (i.e., its maximum number of parallel instances)
varies from one run to the other according to what has been specified into the run_parameters.yaml file. An
example is shown for Deployment 3 in Figure 6.4.

Figure 6.4 - Deployment 3 translated into runs, the amount of runs and their configuration is controlled by the parallelism field of
each component.

Before testing a deployment, the involved clusters need to be setup and correctly configured for the first
run. For configuring virtual clusters, this is done by interacting with IM, while for physical clusters, OSCAR-P
connects via SSH to the front node of the Kubernetes (K8s for short) cluster, and then cordon or uncordon
the worker nodes to reach the required number. Once the clusters are configured correctly, the profiling of
a specific run can take place. In order to modify the configuration of the clusters to adapt it to the next runs,
the cluster configurator can change the number of worker nodes.

20 www.ai-sprint-project.eu

AI-SPRINT Studio

After configuring the clusters to suit the requirements of a particular run, OSCAR-P creates a descriptive
YAML file detailing all the information needed to run the test in a single location. This file contains the list of
all the services, reporting for each one their requirements in terms of memory and cores, their input and
output buckets and the associated Docker images. It also contains a description of the clusters in use, their
endpoints, credentials and configuration, as well as information on the input files to be used to start the
run, their number and the timing of their uploads. This descriptive file is updated with all the subsequent
runs of a deployment, and in the end it serves as a detailed summary of the whole testing campaign.

The run description YAML file is parsed to extract all its relevant information before the run can start.
OSCAR must also be cleaned by removing all the remnants of past executions (if any), such as buckets, old
logs and services, to ensure that they will not interfere with the current run. OSCAR-P then generates an
FDL file containing the information needed to build the new workflow, meaning the required services and
buckets, and uploads it to OSCAR so that it can be applied.

The run is started by moving the required files in the input bucket of the first service, which triggers its
execution. For the full application workflow tests, once the files are moved into the input bucket of the first
component the workflow proceeds by itself, since every component output bucket is the input of another
component (the input parser checks this assumption in the first steps), and OSCAR-P simply monitors the
execution until its completion.

When testing single services instead, a component cannot write its output files in its assigned bucket or else
it would trigger the execution of the next function. The solution adopted is connecting the tested
components to a temporary empty input bucket, and to a temporary output bucket which does not trigger
the execution of other components. The contents of the “real” input bucket are then copied to the dummy
input bucket, just like at the start of the run with the storage bucket, triggering its execution.

After finalising each run, OSCAR-P proceeds to collect and process the logs. The logs are retrieved both from
OSCAR and kubectl, and together they provide information on when a job (that is a single component
execution) was scheduled, when its pod was created, and when it was actually started and finished; all this
information is useful for checking delays, waits and overheads. The relevant logs information, also across
multiple runs, are collected in a single CSV file which is used by the aMLLibrary to train a performance
model for every service/resource pair.

7. SPACE4AI-D
The SPACE4AI-D (System PerformAnce and Cost Evaluation on Cloud for AI applications Design) tool tackles
the component placement problem and resource selection in the computing continuum at design time,
dealing with different AI application requirements in order to effectively orchestrate heterogeneous edge
and cloud resources. Additionally, for each component multiple partitions may exist, since one of the
features offered by the AI-SPRINT is the possibility of partitioning DNNs across different resources. The goal
of the design tool is also to find the optimal DNN partitioning which guarantees the memory and QoS
constraints. SPACE4AI-D receives following files as input:

● Resource description (candidate_resources.yaml) details hardware and software architecture
● Deployment descriptions (candidate_deployments.yaml) details the components such as its

candidate execution layer and the detail of its container like the name of docker image, the memory
size, compatible candidate resources, etc.

● Performance model (performance_models.json generated by OSCARP), includes the directory of
pickle file to predict the performance of components

● Performance constraints (qos_constraints.yaml), details the local constraints of single components
and global constraints related to the sequences of components.

21 www.ai-sprint-project.eu

AI-SPRINT Studio

● Application DAG (application_dag.yaml), details the components’ sequence in the application
modelled as a directed acyclic graph.

● Data transfer size (components_data_size.yaml generated by OSCARP), includes the data transfer
size (expressed in KB) between every two consecutive components of application DAG

● Annotation (annotations.yaml), includes the expected throughput of the AI application.
● SPACE4AI-D.yaml, details the methods and parameters required to run SPACE4AI-D.

SPACE4AI-D finds the minimum cost solution while guaranteeing performance requirements (namely,
requirements on the maximum admissible response times of single components or sequences of
components). SPACE4AI-D uses a random greedy algorithm to find some feasible solutions and improve
these solutions using a heuristic method. The heuristic methods implemented in SPACE4AI-D are as follows:
Tabu Search, Local Search, Simulated Annealing and Genetic Algorithm.

After finishing the execution of the tool, it returns the optimal component placement, resource selection
and the optimal number of nodes/VMs as “production_deployment.yaml” which helps the developer to
find the optimal solution. The production deployment file can then be deployed through IM.

In the final release of SPACE4AI-D, the tool also finds the maximum arrival rate that still keeps the optimal
solution feasible using a binary search. Therefore, the tool, in addition to the output optimal solution JSON
file, generates an output JSON file with the same structure that includes the maximum arrival rate specified
in the "Lambda" field, optimal resources, and the response time of all partitions under the maximum
sustainable arrival rate. Since this output file is used directly by SPACE4AI-R optimizer, it is located in the
AI-SPRINT Application/space4ai-r folder. In the case of multiple component versions
(degraded-performance deployments), the maximum arrival rates are computed for each application
configuration (corresponding to different accuracy levels) and, thus, the tool generates multiple output
JSON files (one for each application configuration) including the maximum arrival rate corresponding to the
application configuration, located in the AI-SPRINT Application/space4ai-r folder.

8. SCONE
SCONE is a framework to protect data (like training or inference data), and code (like Python programs, or AI
models)

● at rest (i.e., on disk),
● in flight (i.e., on the network), and
● in use (i.e., in the main memory).

SCONE protects the confidentiality and integrity of the data and the code without needing to modify or
recompile the application.

One novel aspect of confidential computing is that applications can be protected against privileged
software like the operating system and the hypervisor. To certify that the data and code of a native
application are adequately protected, we need to ensure that all software and hardware components are
sufficiently protected. SCONE isolates each service individually. This reduces not only the attack's surface
but also the effort to certify that an application is properly protected. The isolation enables us to securely
outsource the management of components like the operating system and Kubernetes to a cloud/service
provider. SCONE decouples the integrity and confidentiality of data and code from all other software
components and from the entity that manages the software and hardware stack.

22 www.ai-sprint-project.eu

AI-SPRINT Studio

It is well known that many vulnerabilities are caused by using out-of-date software/hardware/firmware
components. A second novel aspect of confidential computing is that one can attest all components that
we need to ensure the confidentiality and integrity of our application. These components include the CPU,
its firmware and the application code and its data itself. The attestation ensures that these components are
up-to-date and no vulnerabilities are known for these components. In other words, one can establish trust
in all components that are required to execute the application. In SCONE, this attestation is done
transparently at each program start.

Using SCONE, one can transform - a.k.a. sconify - an existing AI application into a confidential application
without needing to modify the application. Moreover, one can integrate this process into existing
development and deployment workflows such as we have done with AI-Sprint Studio.

An AI application typically consists of one or more containers where a container usually hosts one service. A
container is deployed with the help of a container image. Typically, a container image is created as part of a
AI-SPRINT pipeline. One can transform a container image into a confidential container image with the help
of container image sconify_image. This sconification is typically triggered as part of the pipeline. During
development, one might sconify container images using a Linux, a Mac or a Windows machine. There is no
need for a TEE environment.

We show how to build a container image such that the service deployed by this image runs automagically
inside of an Intel SGX enclave. This workflow uses a native image as input. Typically, the native image is
generated by an existing CI/CD pipeline. We translate this native image into a confidential image such that
all files are protected and the service runs inside of an enclave. This is a single-step transformation using the
command sconify_image:

$ sconify_image --from=new-application --to=new-application-confidential ...

Note that this step will be executed transparently within the Toscarizer pipeline based on the security
annotations provided during design time. These security annotations are parsed by AI-SPRINT Design prior
to the deployment and execution of the respective process and used to establish the appropriate
configuration needed to ensure these properties. More details about the configuration, such as how these
annotations will be used to form security policies is provided in D4.2 - Second release and evaluation of the
AI-SPRINT security tools.

23 www.ai-sprint-project.eu

https://sconedocs.github.io/ee_sconify_image/

AI-SPRINT Studio

9. Getting Started
In the following, we provide a tutorial to demonstrate the use of the AI-SPRINT Studio. First, the instructions
for the installation of the tools are provided. Then, we provide a guide on how to create a new AI-SPRINT
application following the provided template. Finally, in Section 8, we provide a complete tutorial to execute
the design of an AI-SPRINT application by considering the example mask detection application.

9.1 AI-SPRINT Studio Installation

Use the available Docker Image

A Docker image is publicly available to use the AI-SPRINT design tools. The image provides the AI-SPRINT
design environment with the following tools:

● Design abstractions manager
● TOSCARIZER
● SPACE4AI-D
● SPACE4AI-D-partitioner
● OSCAR-P

Useful info
Get started with Docker here: https://docs.docker.com/get-started/overview/.
Here are the instructions to install Docker locally: https://docs.docker.com/get-docker/.

Execute the following commands from your terminal.

24 www.ai-sprint-project.eu

https://docs.docker.com/get-started/overview/
https://docs.docker.com/get-docker/

AI-SPRINT Studio

Step 1: Pull the AI-SPRINT Studio Docker Image

$ docker pull registry.gitlab.polimi.it/ai-sprint/ai-sprint-studio

Step 2a: Verification (AI-SPRINT Design)

docker run --rm registry.gitlab.polimi.it/ai-sprint/ai-sprint-studio aisprint --help

expected output

Step 2b: Verification (TOSCARIZER)

$ docker run --rm registry.gitlab.polimi.it/ai-sprint/ai-sprint-studio toscarizer --help

expected output

10. Code Examples
In the following, code examples are provided to familiarize yourself with AI-SPRINT concepts and modules.
Learn how to build an AI-SPRINT application, to run the AI-SPRINT design tools, and to finally deploy the
application.

10.1 Prerequisites
This demo is run on AWS services. In order to setup properly the Infrastructure Manager to deploy
application components on AWS the following steps need to be performed:

1. Register a domain via Route 53, which should also already create a hosted zone
2. Add a random record to the newly created hosted zone

25 www.ai-sprint-project.eu

AI-SPRINT Studio

This is necessary as IM, when deleting an infrastructure, will also delete its created records; if none are left,
it will also delete the hosted zone.

On the next deployment, a new hosted zone will be created, but with name servers different from the ones
linked to the domain, and this will prevent access to OSCAR, MinIO and K8s. Adding a "fake" record to the
initial hosted zone is a simple yet effective fix.

Note that, this step is not needed if the demo environment is already provided by the AI-SPRINT team
(Polimi PhD students don’t perform this step!).

10.2 Build a New AI-SPRINT Application
AI-SPRINT applications must comply with a predefined structure of folders and files, as defined in Section 3
AI-SPRINT Application Architecture. AI-SPRINT provides a project template in the Coockiecutter5 format (see
Figure 10.1), which enables the automatic creation of such an application structure.

Figure 10.1 - Cookiecutter template used to automatically create the application with the structure expected by AI-SPRINT.

Create a new application with the AI-SPRINT

Step 1 Run aisprint new-application

$ docker run --rm \
-v $(pwd):/app_dir/ -w /app_dir \
--user $(id -u):$(id -g) \
registry.gitlab.polimi.it/ai-sprint/ai-sprint-studio \
aisprint new-application --application_name my_new_app

5 https://github.com/cookiecutter/cookiecutter
26 www.ai-sprint-project.eu

AI-SPRINT Studio

Step 2: Verification

$ cd /path/to/app_dir/my_new_app
$ tree .

* tree can be installed by “apt install tree”

expected output

10.3 Execute AI-SPRINT Studio
In the following, an already prepared AI-SPRINT application is used as a base to demonstrate the AI-SPRINT
design tools. The application is the Mask Detection application, whose execution workflow is reported in
Figure 10.2. The application is composed of two main components: “Anon and split” and “Mask detector”.
The former is in charge of anonymizing the video frames by blurring the detected faces, while the latter
performs the detection of the masks. The original implementation of the application can be found at:

https://gitlab.polimi.it/ai-sprint/scar/-/tree/master/examples/mask-detector-workflow

27 www.ai-sprint-project.eu

https://gitlab.polimi.it/ai-sprint/scar/-/tree/master/examples/mask-detector-workflow

AI-SPRINT Studio

Figure 10.2 - Workflow of the mask-detection example application

Indeed, the goal is to determine if there are people not wearing face masks in crowds. The technological
goal is to perform event-driven video processing involving anonymised mask detection based on pre-trained
AI models. For this, video samples are captured through a set of cameras which perform a periodic upload
to an OSCAR cluster running in a cluster of Raspberry Pis (closer to the edge of the network). For the sake of
reproducibility, synthetic videos are being used instead of actual camera footage. These surveillance videos
are preprocessed in order to periodically extract frames and blur the faces of people in the pictures using a
Deep Learning inference application, thus ensuring that only anonymised data is sent to the Cloud,
complying with established data protection regulations for Personally Identifiable Information (PII).

ONNX-Based Blur-Faces Component

In order to demonstrate the DNN-partitioning functionality introduced by AI-SPRINT (see Section 5
AI-SPRINT Design Abstractions), we developed an alternative mask-detection implementation in which the
anonymization component, i.e., the “Anon and split”, relies on the use of the Open Neural Network
Exchange (ONNX6) intermediate representation (IR). ONNX is a widely supported open format used to
represent ML models that enables the interoperability between ML frameworks and tools, as well as the
portability among different devices, by making it easier to optimise the computation depending on the
hardware.

The ONNX-based blur-faces component has the same interface of the original one7, by taking as input an
image and producing as output the anonymized image with the blurred faces. As in the original component,
a DNN-based model is used to detect the faces in the image. In particular, the component uses the
Receptive Field Block (RFB) Net Detector8, in which the top convolution layers of the Single Shot Detector

8 https://arxiv.org/abs/1711.07767

7 https://gitlab.polimi.it/ai-sprint/scar/-/tree/master/examples/mask-detector-workflow/blurry-faces

6 https://onnx.ai/

28 www.ai-sprint-project.eu

https://arxiv.org/abs/1711.07767
https://gitlab.polimi.it/ai-sprint/scar/-/tree/master/examples/mask-detector-workflow/blurry-faces
https://onnx.ai/

AI-SPRINT Studio

(SSD)9 are replaced by the RFB module. The Tensorflow implementation of this model, as well as its ONNX
IR, can be found on GitHub: the repository10 contains different versions of the network, which differ for the
number of parameters. We consider at this stage the RFB-640 version, which the authors report as the one
having the highest precision. We integrated the RFB Net Detector in the original “Anon and split”
application, by preserving the input/output format. The inference of the ONNX model is performed through
the ONNX Runtime11, which allows accelerating models across several hardware platforms.

The predicted bounding boxes of the detected faces are filtered in the post-processing stage based on the
confidence score. Finally, the detected faces are blurred using the blur function from OpenCV. An example
of an anonymized frame from a short example video is provided in Figure 10.3.

Figure 10.3 - Example of output of the Mask Detection application.

Mask Detection Component

The “mask detection" component is in charge of applying the mask recognition inference process on the
output of the existing blur-faces component. The latter consists of a custom Deep Learning model based on
YOLOv3, which takes as input the anonymised images and stores output images, including information
about the detected masks, on the output bucket.

Candidate resource YAML file for Mask Detection application

Below we report the candidate resource file and candidate deployments for the application.

The file includes one network domain that connects two computational layers together with the identified
access delay and bandwidth. The first computational layer includes AWS virtual machine, VM1 based on the
t2.large flavour while VM2 is based on t3.xlarge.

11 https://onnxruntime.ai/

10 https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB

9 https://arxiv.org/abs/1512.02325

29 www.ai-sprint-project.eu

https://onnxruntime.ai/
https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB
https://arxiv.org/abs/1512.02325

AI-SPRINT Studio

System:
name: Mask Detection Application PHD
NetworkDomains:
ND1:
name: Network Domain 1
AccessDelay: 0.00000277
Bandwidth: 40000
subNetworkDomains: []
ComputationalLayers:
computationalLayer1:
name: Public Cloud Layer
number: 1
type: Virtual
Resources:
resource1:
name: VM1
totalNodes: 5
description: t2.large
cost: 1.2
memorySize: 8192
storageSize: 450
storageType: SSD
operatingSystemDistribution: Ubuntu
operatingSystemType: Linux
operatingSystemVersion: 20.04
operatingSystemImageId: aws://us-east-1/ami-0149b2da6ceec4bb0
secureBoot: False
measuredBoot: False
onSpot: False
processors:
processor1:
name: Xeon
type: SkyLake
architecture: amd64
computingUnits: 4
internalMemory: 64
SGXFlag: False

computationalLayer2:
name: Public Cloud Layer
number: 2
type: Virtual
Resources:
resource1:
name: VM2
totalNodes: 5
description: t3.xlarge
cost: 1.8
memorySize: 16384
storageSize: 450
storageType: SSD

30 www.ai-sprint-project.eu

AI-SPRINT Studio

operatingSystemDistribution: Ubuntu
operatingSystemType: Linux
operatingSystemVersion: 20.04
operatingSystemImageId: aws://us-east-1/ami-0149b2da6ceec4bb0
secureBoot: False
measuredBoot: False
onSpot: False
processors:
processor1:
name: Xeon
type: SkyLake
architecture: amd64
computingUnits: 4
internalMemory: 64
SGXFlag: False

Candidate deployments YAML file for Mask Detection application

Candidate deployment file, includes all the possible deployments of components. The first component
(blurry faces), which is partitionable, has two alternative deployments. The first deployment has only one
partition (full DNN) while the second one includes two partitions.

Each partition is a Python function running in a Docker container, thus, the image of docker has to be
identified in the “image” field. Depending on the architecture of resources (ARM or AMD) we need to
create different containers with different properties like memory size etc. for each partition. The candidate
computational layers for the first and second component are 1 and 2, respectively, and the corresponding
candidate resources for those components are VM1 and VM2, respectively.

Components:
component1:
name: blurry-faces-onnx
candidateExecutionLayers: [1]
Containers:
container1:
image: registry.gitlab.polimi.it/ai-sprint/toscarizer/blurry-faces-onnx_base_amd64
memorySize: 1024
computingUnits: 0.9
trustedExecution: false
networkProtection: false
fileSystemProtection: false
GPURequirement: false
candidateExecutionResources: [VM1]

component1_partitionX_1:
name: blurry-faces-onnx_partitionX_1
candidateExecutionLayers: [1]
Containers:
container1:
image: registry.gitlab.polimi.it/ai-sprint/toscarizer/blurry-faces-onnx_partition1_1_amd64
memorySize: 1024
computingUnits: 0.9

31 www.ai-sprint-project.eu

AI-SPRINT Studio

trustedExecution: false
networkProtection: false
fileSystemProtection: false
GPURequirement: false
candidateExecutionResources: [VM1]

component1_partitionX_2:
name: blurry-faces-onnx_partitionX_2
candidateExecutionLayers: [1]
Containers:
container1:
image: registry.gitlab.polimi.it/ai-sprint/toscarizer/blurry-faces-onnx_partition1_2_amd64
memorySize: 1024
computingUnits: 0.9
trustedExecution: false
networkProtection: false
fileSystemProtection: false
GPURequirement: false
candidateExecutionResources: [VM1]

component2:
name: mask-detector
candidateExecutionLayers: [2]
Containers:
container1:
image: registry.gitlab.polimi.it/ai-sprint/toscarizer/mask-detector_base_amd64
memorySize: 1024
computingUnits: 0.9
trustedExecution: false
networkProtection: false
fileSystemProtection: false
GPURequirement: false
candidateExecutionResources: [VM2]

Let’s start with the example!

Step 1: Download the Mask Detection application (mask_detection_v1)

$ cd /path/to/working/dir
$ wget -O mask_detection_v1.zip
"https://polimi365-my.sharepoint.com/:f:/g/personal/10393616_polimi_it/EQKptxvhEftFk7RzyiRn1JcBu8
zRo-9URSFGCph3geFN9g?e=hFFsRR&download=1"
$ unzip mask_detection_v1.zip

Let’s check the structure of the application

$ tree mask_detection_v1

32 www.ai-sprint-project.eu

AI-SPRINT Studio

Expected output

Step 2: Run aisprint design

$ docker run --rm \
-v $(pwd):/app_dir/ -w /app_dir \
--user $(id -u):$(id -g) \
registry.gitlab.polimi.it/ai-sprint/ai-sprint-studio \
aisprint design --application_dir mask_detection_v1

Expected output

33 www.ai-sprint-project.eu

AI-SPRINT Studio

Verify the following files have been generated:

34 www.ai-sprint-project.eu

AI-SPRINT Studio

- “annotations.yaml” - It summarizes the parsed AI-SPRINT annotations. In particular, it is possible to
observe from the summary that each component has a component_name annotation, which
defines its name, and a local execution time constraint, which is of 20 seconds for the
blurry-faces-onnx component and of 10 seconds for the mask-detector component. Finally, the
blurry-faces-onnx component is annotated in order to be partitioned. Indeed, in the file there is the
partitionable_model item with the onnx_file as value.

$ cat mask_detection_v1/common_config/annotations.yaml

Expected output

- “designs” - It contains the designs of the application components

$ tree mask_detection_v1/aisprint/designs

Expected output

35 www.ai-sprint-project.eu

AI-SPRINT Studio

- “deployments” - It contains the base application deployment and the other additional
deployments, together with the generated QoS constraints.

$ tree mask_detection_v1/aisprint/deployments

Expected output

36 www.ai-sprint-project.eu

AI-SPRINT Studio

- “multi_cluster_qos_constraints.yaml” - QoS constraints automatically generated for the AI-SPRINT
AMS for all the possible deployments and layers.

$ cat mask_detection_v1/aisprint/deployments/multi_cluster_qos_constraints.yaml

Expected output

37 www.ai-sprint-project.eu

AI-SPRINT Studio

Step 3: Run TOSCARIZER

The TOSCARIZER

- automatically builds the Docker images of the components’ designs generated in Step2
- automatically pushes the built Docker images to desired registry. It is required to log in the registry

in order to push the images

Note: In this example we are going to use the dockerhub registry docker.io (see https://hub.docker.com/).

Ensure to be logged in the chosen registry. For dockerhub you can use docker login. You are required to use
your username and password.

38 www.ai-sprint-project.eu

https://hub.docker.com/

AI-SPRINT Studio

$ docker login

Run the TOSCARIZER

$ docker run --rm -t \
-v $(pwd):/app_dir/ -w /app_dir \
-v /var/run/docker.sock:/var/run/docker.sock \
-v $HOME/.docker/config.json:/root/.docker/config.json \
registry.gitlab.polimi.it/ai-sprint/ai-sprint-studio \
aisprint toscarizer docker --registry docker.io --registry_folder registry_folder \
--application_dir mask_detection_v1

Expected output

Check the “containers.yaml” file, which summarizes the built and pushed Docker images.

$ cat mask_detection_v1/aisprint/designs/containers.yaml

Expected output

Step 4: Deploy Base Deployment

At the end of the AI-SPRINT design the base deployment is automatically generated and set as the current
optimal deployment. The base deployment consists in the base solution which uses the original
components’ implementations (not partitioned), which are assigned to the first available candidate

39 www.ai-sprint-project.eu

AI-SPRINT Studio

resources. Before running the OSCAR-P and SPACE4AI-D tools, the base deployment allows a
ready-to-be-deployed version of the application, that can be used for testing purposes.

The base deployment is generated in the ‘aisprint/deployments’ folder of the application. Let’s visualize it:

$ tree mask_detection_v1/aisprint/deployments

Expected output

The generated production_deployment.yaml file contains the summary of the resources selected for
running the base deployment, as well as the assignment of the resources for each (base) component. The
optimal_deployment is a symbolic link to the current optimal deployment folder that, in the current stage, is
the base one. In order to use the base deployment the following steps must be executed:

● Run the TOSCARIZER to generate the TOSCA files for the two components of the base deployment

$ docker run --rm \
-v $(pwd):/app_dir -w /app_dir \

40 www.ai-sprint-project.eu

AI-SPRINT Studio

registry.gitlab.polimi.it/ai-sprint/ai-sprint-studio \
toscarizer tosca --application_dir mask_detection_v1 --optimal --domain domain_name

As output you will find two new generated files in “aisprint/deployments/optimal_deployment/im”
that are the TOSCA files for the two components, i.e., blurry-faces-onnx.yaml and
mask-detector.yaml files. The domain_name is needed to deploy on AWS and should be bought and
configured on AWS Route 53

● The following is the template of the auth.dat file to be placed under im/:

id = im; type = InfrastructureManager; username = [IM username]; password = [IM password]
id = ec2; type = EC2; username = [access key ID]; password = [secret access key]

● Upload the TOSCA files to IM with the TOSCARIZER “deploy” command. The credentials for IM can
be created by going to IM > Cloud credentials > New credentials > Infrastructure Manager:

$ docker run --rm -t \
-v $(pwd):/app_dir -w /app_dir \
registry.gitlab.polimi.it/ai-sprint/ai-sprint-studio \
toscarizer deploy --application_dir mask_detection_v1 --optimal

Step 5: Run OSCAR-P

OSCAR-P needs to interact with IM (https://www.grycap.upv.es/im) to deploy virtual infrastructure on AWS
EC2. Copy the previously generated auth.dat file, if not already present, under
aisprint/deployments/base/im/:

id = im; type = InfrastructureManager; username = [IM username]; password = [IM password]
id = ec2; type = EC2; username = [access key ID]; password = [secret access key]

Copy the URLs of the previously generated Docker images from the aisprint/designs/containers.yaml file in
the “image” fields of the common_config/candidate_deployments.yaml file.

The testing campaign is controlled by the run_parameters.yaml file placed under oscarp/:

input_files:
storage_bucket: "storage"
filename: "Test-Video.mp4"

asynchronous:
batch_size: 5
number_of_batches: 2
distribution: "deterministic"
inter_upload_time: 20

41 www.ai-sprint-project.eu

AI-SPRINT Studio

synchronous:
number_of_pre_allocated_pods: 2
connect_timeout_seconds: 30
request_timeout_seconds: 300
worker_nodes: 4
distribution: constant
intervals:
- throughput: 2
number_of_threads: 1
duration_seconds: 600
ramp_up_seconds: 0

- throughput: 5
number_of_threads: 5
duration_seconds: 600
ramp_up_seconds: 10

components:
component1:
parallelism: [10, 8, 6, 4, 2]

component2:
parallelism: [10, 8, 6, 4, 2]
distribution: "deterministic"

run:
test_synchronously: False
test_single_services: True
train_models: True
campaign_dir: "TEST"
repetitions: 3
cooldown_time: 30

other:
time_correction: 0
domain_name: "polimi-demo.click"
clean_infrastructures_before_testing: True
clean_infrastructures_after_testing: True

According to this example, 10 copies of the input file will be used to trigger the test, and they will be
uploaded in two batches of five, with an interval of 20 seconds between them. Two deployments will be
tested, the first one involving blurry-faces and mask-detector and the second one involving the segments of
partitioned blurry-faces and mask-detector. Each deployment will have 5 runs, with the parallelism level of
every component going from 10 to 2. As each run will be repeated thrice, we’ll have a total of 15 runs for
both deployments.

The tables below describe in detail OSCAR-P input parameters.

42 www.ai-sprint-project.eu

AI-SPRINT Studio

Input_files

Field Description

storage_bucket This is the name of the bucket where OSCAR-P will store the input files before
starting the run. The bucket will be created on the OSCAR cluster hosting the first
service of the application.
Moving the input file into the input bucket from the storage bucket reduces
latency to a minimum, which results in more accurate profiling data; if we were to
upload the input files directly from the user computer, we'd have to take into
account the network latency as well. Unless you have already created the storage
bucket manually it'd be best to leave the default name.

filename The name of the file used for the tests. It needs to be either uploaded manually
into the storage bucket, or stored under /OSCARP/input_files/

Asynchronous

batch_size Number of files for every batch.

number_of_batches Number of batches that will be uploaded.

distribution Time distribution used to time the upload of the various batches, valid options are
"deterministic" or "exponential".

inter_upload_time If the distribution used is "deterministic", "inter_upload_time" is plainly the time
interval between the upload of different batches.
If the distribution is "exponential", the time interval is defined as the maximum
between inter_upload_time, and a sample from an exponential distribution where
"inter_upload_time" is the scale.

Synchronous

number_of_pre_allocated_pods Number of hot pods on the OSCAR cluster, only applies to the first service

ramp_up_seconds Thread creations will be divided on this interval, avoids bursts of requests

number_of_threads Total number of threads to be used by Jmeter

connect_timeout_seconds Connection timeout for each request

request_timeout_seconds Response timeout for each request

intervals A list of intervals that will be tested in sequence; each interval has a
duration and a target throughput

worker_nodes Number of nodes on which Jmeter is deployed. The more nodes, the
greater the maximum workload that can be generated

distribution Constant or exponential. Distribution of jobs generated by Jmeter

43 www.ai-sprint-project.eu

AI-SPRINT Studio

Parallelism

Field Description

parallelism A parallelism value defines the maximum number of instances that a component
is allowed to have at the same time. A test will be performed for every value of
the array, so the arrays of size three shown in the example above will translate to
three tests. The parallelism arrays of all the components must have the same
size.

Run

Field Description

campaign_dir This is the name of the bucket where OSCAR-P will store the input files before
starting the run. The bucket will be created on the OSCAR cluster hosting the first
service of the application.
Moving the input file into the input bucket from the storage bucket reduces
latency to a minimum, which results in more accurate profiling data; if we were
to upload the input files directly from the user computer, we'd have to take into
account the network latency as well.
Unless you have already created the storage bucket manually it'd be best to leave
the default name.

repetitions

cooldown_time

Other

Field Description

time_correction This is needed to align the times gathered from different sources, don't change it.

domain_name The name of the registered domain associated with your AWS account, needed to
correctly deploy the virtual infrastructures.

clean_infrastructures
_before_testing

Delete all active machines before launching the entire simulation

clean_infrastructures
_after_testing

Deletes all active machines after running the entire simulation

OSCAR-P can then be launched with the following command (note the --dry_run flag) to ensure that
everything is configured correctly:

44 www.ai-sprint-project.eu

AI-SPRINT Studio

docker run -t \
-v $(pwd)/mask_detection_v1:/mask_detection_v1 \
--rm registry.gitlab.polimi.it/ai-sprint/ai-sprint-studio \
aisprint profile --application_dir mask_detection_v1 --dry_run

The campaign can then be started with the following command:

docker run -it \
-v $(pwd)/mask_detection_v1:/mask_detection_v1 \
-v /var/run/docker.sock:/var/run/docker.sock \
-v /tmp:/tmp \
--rm registry.gitlab.polimi.it/ai-sprint/ai-sprint-studio \
aisprint profile --application_dir mask_detection_v1

Expected output, recap of the whole campaign:

Deployments:
deployment_0: ['C1@VM1', 'C2@VM2']
deployment_1: ['C1P1.1@VM1', 'C1P1.2@VM1', 'C2@VM2']

Testing deployment_0:
Calculating hardware requirements...
Component C1@VM1 can fit 4 container(s) on every node:

CPU needs to be decreased to (at least) 0.72 to fit more
Component C2@VM2 can fit 2 container(s) on every node:

CPU needs to be decreased to (at least) 0.6 to fit more

Deploying virtual infrastructures...
Resource VM1 is being deployed...
Resource VM2 is being deployed…

Waiting for infrastructure deployment (this may take up to 15 minutes)...
Done!

Adjusting physical infrastructure configuration...
Done!

Expected output, recap of the current deployment:

Starting Run #1 of 5 (full workflow)
Workflow:

storage -> bucket0
bucket0 -> |blurry-faces-onnx| -> bucket1
bucket1 -> |mask-detector-onnx| -> bucket2

Scheduler:
Run #1

Services:

45 www.ai-sprint-project.eu

AI-SPRINT Studio

blurry-faces-onnx cpu: 0.9 , memory: 1024 mb , parallelism: 10 , cluster: VM1
mask-detector-onnx cpu: 0.9 , memory: 1024 mb , parallelism: 10 , cluster: VM2

Clusters:
VM1 nodes: 3
VM2 nodes: 3

Run #2
Services:

blurry-faces-onnx parallelism: 10 -> 8
mask-detector-onnx parallelism: 10 -> 8

Clusters:
VM1 nodes: 3 -> 2
VM2 nodes: 3 -> 2

Run #3
Services:

blurry-faces-onnx parallelism: 8 -> 6
mask-detector-onnx parallelism: 8 -> 6

Clusters:
VM1 unchanged
VM2 unchanged

Run #4
Services:

blurry-faces-onnx parallelism: 6 -> 4
mask-detector-onnx parallelism: 6 -> 4

Clusters:
VM1 nodes: 2 -> 1
VM2 nodes: 2 -> 1

Run #5
Services:

blurry-faces-onnx parallelism: 4 -> 2
mask-detector-onnx parallelism: 4 -> 2

Clusters:
VM1 unchanged
VM2 unchanged

Repeated 3 time(s), 15 runs in total

46 www.ai-sprint-project.eu

AI-SPRINT Studio

Expected output, single run:

Removing services...
Removed service blurry-faces-onnx from cluster VM1
Done!

Removing buckets...
Removed bucket minio-VM1/bucket0/ from cluster VM1
Done!

Adjusting OSCAR configuration...
Checking correct OSCAR deployment...
Service blurry-faces-onnx deployed on cluster VM1
Service mask-detector-onnx deployed on cluster VM2
Done!

Moving input files...
Done!

Waiting for service blurry-faces-onnx completion...
100%|██████████| 5/5 [01:01<00:00, 12.21s/it]
Service blurry-faces-onnx completed!
Waiting for service mask-detector-onnx completion...
100%|██████████| 10/10 [00:31<00:00, 3.10s/it]
Service mask-detector-onnx completed!

Collecting OSCAR logs...
100%|██████████| 5/5 [00:03<00:00, 1.66it/s]
100%|██████████| 10/10 [00:04<00:00, 2.22it/s]
Done!

Processing logs...
Done!

The ML models will be generated at the end of all the runs of a service by using an automated library
named aMLLibrary (https://github.com/brunoguindani/aMLLibrary). Its configuration file should be placed
under oscarp/.

47 www.ai-sprint-project.eu

https://github.com/brunoguindani/aMLLibrary

AI-SPRINT Studio

The following is an example of configuration file that uses sequential feature selection (SFS):

[General]
run_num = 1
techniques = ['LRRidge', 'DecisionTree', 'XGBoost', 'RandomForest']
hp_selection = KFold
folds = 5
validation = HoldOut
hold_out_ratio = 0.2
y = "avg_response_time"
hyperparameter_tuning = Hyperopt
hyperopt_max_evals = 10
hyperopt_save_interval = 0

[DataPreparation]
input_path = TEST/deployment_0/Full_workflow/results/Dataframes/blurry-faces-onnx_dataframe.csv
log = ["cores"]
inverse = ["cores"]
skip_columns = ["requested_throughput", "requested_parallelism", "warm_pods"]
product_max_degree = 2

[FeatureSelection]
method = "SFS"
max_features = 5
folds = 5

[LRRidge]
alpha = ['loguniform(0.01,1)']

[XGBoost]
min_child_weight = [1]
gamma = ['loguniform(0.1,10)']
n_estimators = [1000]
learning_rate = ['loguniform(0.01,1)']
max_depth = [100]

[DecisionTree]
criterion = ['mse']
max_depth = [3]
max_features = ['auto']
min_samples_split = ['loguniform(0.01,1)']
min_samples_leaf = ['loguniform(0.01,0.5)']

[RandomForest]
n_estimators = [5]
criterion = ['mse']
max_depth = ['quniform(3,6,1)']
max_features = ['auto']
min_samples_split = ['loguniform(0.1,1)']
min_samples_leaf = [1]

48 www.ai-sprint-project.eu

AI-SPRINT Studio

In the current configuration the library will train four models with techniques Ridge Regression, Decision
Tree, XGBoost and Random Forest. 20% of the dataset will be used for validation and the hyperparameters
will be tuned by using the Hyperopt framework. Moreover feature selection is enabled as well as automatic
feature engineering, in the form of feature products/polynomial expansion up to the second degree. For
additional details, please refer to the aMLLibrary official documentation.

Step 6: Run SPACE4AI-D

The parameters required to run Random Greedy and heuristics have to be provided in SPACE4AI-D.yaml. An
example of SPACE4AI-D.yaml is shown below:

EdgeResources:
- computationalLayer1

CloudResources:
- computationalLayer2
- computationalLayer3

Methods:
method1:

name: RandomGreedy
iterations: 1000
duration: 0

method2:
name: GeneticAlgorithm
startingPointNumber: 5
iterations: 1
duration: 1
specialParameters:

crossoverRate: 0.5
mutationRate: 0.7

method3:
name: BS
upperBoundLambda: 2
epsilon: 0.00001

Seed: 1
VerboseLevel: 1
Time: 1

Since the tool considers three main categories of resources: Edge Resources, Cloud Resources and FaaS, It
must be specified that each computational layer belongs to Edge Resources or Cloud Resources. It is
assumed that all FaaS configurations belong to a single computational layer, thus the last computational
layer always belongs to the FaaS and it is not needed to be mentioned in the file.

In “Methods” section, the user specifies the methods. “method1” is always the Random Greedy method
while “method2” can be one of heuristics. “method2” is not mandatory in the sense that the best result
obtained by Random Greedy might be enough for the user. All the methods need two main parameters:
“iterations” and “duration” which means how many iterations or how long (in second) the method must
run. The tool runs the specified method based on the parameter that takes longer.

“method2” needs a general parameter called “startingPointNumber” which specifies the number of initial
solutions that the heuristic methods explore. These initial solutions are found by Random Greedy. For

49 www.ai-sprint-project.eu

AI-SPRINT Studio

example, if the user set startingPointNumber: k, it means that k-best solutions of Random Greedy will be
fed to the heuristics as the initial solutions.

Each heuristic method (except LocalSearch) needs some specific parameters to explore the solutions. The
list of parameters are reported in the following table:

Special Parameters Description

Tabu Search tabuSize The memory size of the tabu list.

Genetic
Algorithm

mutationRate
crossoverRate

The probability of mutation.
The probability of crossover.

Simulated
Annealing

temperature
scheduleConstant

Initial temperature.
The initial temperature is gradually decreased according to
“scheduleConstant”. It must be between 0 and 1.

In order to find the maximum arrival rate that still keeps the solution feasible, SPACE4AI-D runs a binary
search (mentioned as method3) to find the maximum arrival rate in the range of current arrival rate and an
upper bound that can be reached for the application (upperBoundLambda field). The Binary Search is a
mandatory method and another field, epsilon, is required to identify the difference between the minimum
infeasible arrival rate and maximum feasible arrival rate to stop the binary search.

The rest Items, “Seed”, “VerboseLevel”, and “Time” identify the seed for generating random parameters of
the methods, the verbose level for logging and the time horizon, respectively.

Run SPACE4AI-D

$ docker run -t \
-v {path to the project folder}:/{folder name} \
--rm registry.gitlab.polimi.it/ai-sprint/ai-sprint-studio \
aisprint space4aid --application_dir {folder name}

After running SPACE4AI-D, it generates the optimal solution as a “production_deployment.yaml” file which
includes all the information about the selected deployments as well as the selected resources assigned to
the components. An example of production_deployment.yaml related to mask detection application is
reported below:

System:
Components:
blurry-faces-onnx:
name: blurry-faces-onnx
Containers:
container1:
image: registry.gitlab.polimi.it/ai-sprint/blurry-faces-onnx:tag
memorySize: 1024
computingUnits: 0.9
trustedExecution: false
networkProtection: false
fileSystemProtection: false

50 www.ai-sprint-project.eu

AI-SPRINT Studio

GPURequirement: false
selectedExecutionResource: VM1

executionLayer: 1
mask-detector:
name: mask-detector
Containers:
container1:
image: registry.gitlab.polimi.it/ai-sprint/mask-detector:tag
memorySize: 1024
computingUnits: 0.9
trustedExecution: false
networkProtection: false
fileSystemProtection: false
GPURequirement: false
selectedExecutionResource: VM2

executionLayer: 2
Resources:
name: Mask Detection Application PHD
NetworkDomains:
ND1:
name: Network Domain 1
AccessDelay: 0.00000277
Bandwidth: 40000
subNetworkDomains: []
ComputationalLayers:
computationalLayer1:
name: Public Cloud Layer
number: 1
type: Virtual
Resources:
resource1:
name: VM1
totalNodes: 5
description: t2.large
cost: 1.2
memorySize: 8192
storageSize: 450
storageType: SSD
operatingSystemDistribution: Ubuntu
operatingSystemType: Linux
operatingSystemVersion: 20.04
operatingSystemImageId: aws://us-east-1/ami-0149b2da6ceec4bb0
secureBoot: False
measuredBoot: False
onSpot: False
processors:
processor1:
name: Xeon
type: SkyLake
architecture: amd64

51 www.ai-sprint-project.eu

AI-SPRINT Studio

computingUnits: 4
internalMemory: 64
SGXFlag: False

computationalLayer2:
name: Public Cloud Layer
number: 2
type: Virtual
Resources:
resource1:
name: VM2
totalNodes: 5
description: t3.xlarge
cost: 1.8
memorySize: 16384
storageSize: 450
storageType: SSD
operatingSystemDistribution: Ubuntu
operatingSystemType: Linux
operatingSystemVersion: 20.04
operatingSystemImageId: aws://us-east-1/ami-0149b2da6ceec4bb0
secureBoot: False
measuredBoot: False
onSpot: False
processors:
processor1:
name: Xeon
type: SkyLake
architecture: amd64
computingUnits: 4
internalMemory: 64
SGXFlag: False

The optimal configuration found by SPACE4AI-D can then be deployed through TOSCARIZER/IM by running
the following commands.

First we need to generate the TOSCA templates for the recently generated optimal solution with the
description of the full virtual infrastructure needed to deploy all the application components. For the
correct OSCAR configuration a set of valid DNS names are assigned to the nodes to enable correct and
secure external access to the services. A Route53 managed domain is required to make it work. You can set
it with the “--domain” parameter (otherwise the default im.grycap.net will be used):

$ docker run --rm \
-v {path to the project folder}:/app_dir/ \
registry.gitlab.polimi.it/ai-sprint/ai-sprint-studio \
toscarizer tosca --application_dir /app_dir \
--domain mydomain.my \
--optimal

52 www.ai-sprint-project.eu

AI-SPRINT Studio

Expected output:

DONE. TOSCA file /app_dir/aisprint/deployments/optimal_deployment/im/blurry-faces-onnx.yaml has
been generated for Component: blurry-faces-onnx.
DONE. TOSCA file /app_dir/aisprint/deployments/optimal_deployment/im/mask-detector.yaml has been
generated for Component: mask-detector.

To perform the infrastructure deployment, two additional files are required:

● The first one is “<app_path>/im/auth.dat” with the IM authentication file12. The IM authentication
file must contain the InfrastructureManager and all the cloud provider credentials that will be used
in the deployment, including any already existing OSCAR cluster where a service has to be deployed.
Moreover one line with an AWS credential (EC2 type) is needed to manage the DNS domain names
used in the OSCAR TOSCA template. In case of using the default domain value (im.grycap.net) you
should contact the authors to get a set of valid credentials. Otherwise you have to add some EC2
credentials to manage the specified domain (set in the TOSCA creation) in AWS Route53. The EC2
credentials must appear after any other cloud provider specified.

type = InfrastructureManager; username = user; password = pass
id = one; type = OpenStack; host = server:5000; username = user; password = pass; tenant = ten
id = oscar1; type = OSCAR; host = https://oscar.domain.com; username = user; password = pass
id = ec2; type = EC2; username = AK; password = SK

● The second one is “<app_path>/common_config/physical_nodes.yaml” with the information
about the already deployed physical nodes. This file is only needed in case of using any type of
resource “AlreadyDeployed”. This file should include all the needed data to contact with the set of
already deployed resources. There are two different cases:

○ An already existing OSCAR cluster: In this case the needed data are the minio endpoint and
credential (access key and secret key) and setting an oscar name.

○ A set of already existing machines: In this case the information about the SSH connection to
access the nodes is required.

12 https://imdocs.readthedocs.io/en/latest/client.html#auth-file
53 www.ai-sprint-project.eu

https://imdocs.readthedocs.io/en/latest/client.html#auth-file

AI-SPRINT Studio

Case of an already existing OSCAR cluster
ComputationalLayers:

computationalLayer1:
number: 1
Resources:

resource1:
name: RaspPi
minio:

endpoint: https://minio.oscar.domain.com
access_key: minio
secret_key: pass

oscar:
name: oscar-test

Case of already deployed nodes
computationalLayer2:

number: 2
Resources:

resource1:
name: PhysicalNode1
fe_node:

public_ip: 158.42.1.1
private_ip: 192.168.1.2
ssh_user: user
ssh_key: |

-----BEGIN RSA PRIVATE KEY-----
…
-----END RSA PRIVATE KEY-----

wns:
- private_ip: 192.168.1.3
ssh_user: user
ssh_key: |

-----BEGIN RSA PRIVATE KEY-----
…
-----END RSA PRIVATE KEY-----

- private_ip: 192.168.1.4
ssh_user: user
ssh_key: |

-----BEGIN RSA PRIVATE KEY-----
…
-----END RSA PRIVATE KEY-----

Then we use the deploy command to launch the infrastructure deployment. It will create one
“infrastructure” per each application component. They will be created in order in case that some there are
dependencies among the different components. This command will also wait for all the infrastructures to be
correctly deployed.

54 www.ai-sprint-project.eu

AI-SPRINT Studio

$ docker run --rm \
-v {path to the project folder}:/app_dir/ \
registry.gitlab.polimi.it/ai-sprint/ai-sprint-studio \
toscarizer deploy --application_dir /app_dir --optimal

Expected output:

Launching deployment for component mask-detector
Launching deployment for component blurry-faces-onnx

Once deployed all the components resources we can get the TOSCA outputs where we can find all the
needed information to access the deployed resources: OSCAR and MinIO endpoints, credentials, etc.

$ docker run --rm \
-v {path to the project folder}:/app_dir/ \
registry.gitlab.polimi.it/ai-sprint/ai-sprint-studio \
toscarizer outputs --application_dir /app_dir --optimal

Expected output:

blurry-faces-onnx:
oscar_service_cred: service_token
oscar_service_url: https://oscar.domain.com/system/services/blurry-faces-onnx

mask-detector:
dashboard_endpoint: https://oscar-cluster-1234.mydomain.my/dashboard/
oscarui_endpoint: https://oscar-cluster-1234.mydomain.my
minio_endpoint: https://minio.oscar-cluster-1234.mydomain.my
console_minio_endpoint: https://console.minio.oscar-cluster-1234.mydomain.my
admin_token: kubepass
oscar_password: oscarpass
minio_password: miniopass

Finally if the execution has finished and you do not need the resources you can delete them.

$ docker run --rm \
-v {path to the project folder}:/app_dir/ \
registry.gitlab.polimi.it/ai-sprint/ai-sprint-studio \
toscarizer delete --application_dir /app_dir --optimal

Expected output:

Deleting infrastructure for component blurry-faces-onnx
Infrastructure successfully deleted.
Deleting infrastructure for component mask-detector
Infrastructure successfully deleted.

55 www.ai-sprint-project.eu

AI-SPRINT Studio

Step 7: SCONIFYING a container

In order to SCONIFY docker containers used in an AI-SPRINT application,, developers can annotate tasks to
receive certain security guarantees while executing. For this, we define the following constraints that can be
used to annotate the main function of a Python script:

@security(trustedExecution=true,networkShield=true,filesystemShield=true)

We will now briefly recap the different properties and meaning of the above annotations.

The trustedExecution translates to the use of trusted execution environments (TEE). Hence, the process
that is executing the task will run in a TEE such as Intel SGX. This will also lead to the fact that such tasks will
only be scheduled on processes that run on nodes that provide the necessary hardware support. If no such
node is available, the task will run on a node that provides at least secure and measured boot mechanisms
such that the used operating system and kernel can be trusted (for additional details, see AI-SPRINT
Deliverable D4.3 -Final release and evaluation of the security tools).

The networkShield flag ensures that all TCP connections will be wrapped using SCONE’s network shielding
layer where all data that is read and written will be transparently encrypted/decrypted. Alternatively,
service meshes such as Istio1 that provide secure communication will be deployed along the processes on a
Kubernetes cluster.

Similar as with network encryption, the filesystemShield flag ensures that all files written and read by the
process executing the tasks are encrypted. This is achieved by intercepting the system calls through SCONE
in a similar fashion as for the network shielding.

All these flags will then be extracted from the source code files and put in a global annotations file which
will then be considered during the sconfication pass which is transparently executed in the pipeline of
AI-SPRINT studio. Alternatively, this can be also triggered manually using the following command:

$ sconify_image_ai_sprint --from=dockerimage --to=dockerimage-confidential …--application_dir
/app_dir

The location of the application dir is important in order to extract the necessary information and perform
the correct transformation of the native docker image into a secure one.

Expected output:

name:
mask-detector_base_amd64-8574/registry.gitlab.polimi.it-ai-sprint-toscarizer-mask-detector_base_amd6
4-sgx
version: "0.3"

Access control:
- only the data owner (CREATOR) can read or update the session
- even the data owner cannot read the session secrets (i.e., the volume key and tag) or delete the
session

56 www.ai-sprint-project.eu

AI-SPRINT Studio

access_policy:
read:
- CREATOR
update:
- CREATOR

services:
- name: service
image_name: service_image
mrenclaves: [092a56e466d25aedadf1d185225421a168180215168af43a3c836c23ca05e6dd]
command: "python3"
environment:

SCONE_MODE: hw

PYTHON_VERSION: "3.8.14"
PYTHON_SETUPTOOLS_VERSION: "57.5.0"
LANG: "C.UTF-8"
GPG_KEY: "E3FF2839C048B25C084DEBE9B26995E310250568"
PYTHON_PIP_VERSION: "22.0.4"
LD_LIBRARY_PATH: "/lib:/usr/lib:/usr/local/lib:"

PYTHON_GET_PIP_SHA256:
"5aefe6ade911d997af080b315ebcb7f882212d070465df544e1175ac2be519b4"

PYTHON_GET_PIP_URL:
"https://github.com/pypa/get-pip/raw/5eaac1050023df1f5c98b173b248c260023f2278/public/get-pip.py
"

PATH: "/usr/local/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin"
SCONE_HOST_PATH: "/etc/resolv.conf:/etc/hosts"

pwd: /
fspf_key: 893f70cfb76f1224e20b709246420c501e73194f20cd075bf3d9c4106261887d
fspf_tag: b697ccb30cbd90b1b42c2bafbf9a149d
fspf_path: /fspf/fs.fspf

images:
- name: service_image

security:
attestation:

tolerate: [hyperthreading, insecure-igpu, outdated-tcb, software-hardening-needed,
insecure-configuration, debug-mode]

ignore_advisories: "*"

Progress : [%%] 100%: Finished
sconification

57 www.ai-sprint-project.eu

AI-SPRINT Studio

11. AI-SPRINT Runtime environment
The goal of the AI-SPRINT runtime environment is to support the automated deployment and monitoring of
customized virtualized resources across the computing continuum. This encompasses the provision of
computing resources to support the accelerated training of AI models as well as deploying the required
services to support inference on the computing continuum together with the readaptation of components
depending on varying conditions such as computing workload and network conditions.

This section will cover several components of the AI-SPRINT Runtime environment. First, the AI-SPRINT
Monitoring Subsystem (AMS), which monitors various aspects of the system on various levels, such as
cluster infrastructure resources, application performance, or any other application–specific metric. Second,
the Secure Generative Data Exchange (SGDE), a synthetic data exchange tool based on privacy-preserving
data generators. Third, the Privacy Preserving Component, a tool to train and retrain artificial neural
networks providing high performance and security levels. Fourth, the AI-SPRINT Scheduling for Accelerated
Devices, which aims to select the best scheduling and component allocation for deep learning training jobs
on GPU-accelerated clusters, minimising the execution costs, while meeting deadline constraints. Finally,
SPACE4AI-R (Runtime Tool for AI applications Resource Reconfiguration in Computing Continua) which
periodically evaluates the resources allocation based on data gathered by the AI-SPRINT monitoring
subsystem and updates the running components configuration (adding/removing/moving nodes,
infrastructures, components and buckets) according to the varying conditions at runtime.

11.1 AI–SPRINT Monitoring Subsystem (AMS)
AMS provides the ability to collect and analyse various parameters describing the system state over time.
The system is being monitored on multiple levels:

1. cluster level (infrastructure)
2. local and global AI–SPRINT (QoS) constraints
3. user–defined custom application–level metrics.

All this data is being collected while taking into account that some parts of the monitored system may be
deployed on different clusters (layers) and that some elements may work in air–gap mode for prolonged
periods of time, which is an important scenario for edge devices. Additionally, AMS raises alerts and emits
notifications when a predefined set of constraints has been violated. The collected data can be analysed and
visualised on automatically generated Grafana dashboards.

Furthermore, there is a component focused on application log gathering, based on the Elastic Stack and the
AMS RESTful API is provided for other subsystems and components in order to communicate with AMS. This
instruction focuses on metrics only, as the mask detector application does not integrate with the AMS log
management framework.

58 www.ai-sprint-project.eu

AI-SPRINT Studio

11.1.1 Infrastructure monitoring
By default, AMS collects in the background various node metrics from every Kubernetes node. To analyse
cluster data: in Grafana: dashboards→ cluster monitoring.

Steps to change the scope of cluster monitoring and regenerate the dashboard:

1. Acquire the configuration file provided by the Infrastructure Manager, e.g., with:
kubectl -n ai-sprint-monitoring cp $(kubectl-n ai-sprint-monitoring get pods
-l=app=ai-sprint-monit-manager -o
jsonpath="{.items[0].metadata.name}"):templates/monitoring_setup.yaml monitoring_setup.yaml

59 www.ai-sprint-project.eu

AI-SPRINT Studio

2. Edit the configuration file (monitoring_setup.yaml), e.g., remove all metrics but cpu,

3. Upload the updated configuration file with:
kubectl -n ai-sprint-monitoring cp monitoring_setup.yaml $(kubectl -n ai-sprint-monitoring get pods
-l=app=ai-sprint-monit-manager -o
jsonpath="{.items[0].metadata.name}"):templates/monitoring_setup.yaml

4. Trigger re–configuration with:
kubectl -n ai-sprint-monitoring exec deployment/ai-sprint-monit-manager -- ./setup_monitoring.sh

5. The dashboards update automatically in the background.

11.1.2 QoS monitoring
The default configuration depends on the application annotations and is provided by AI–SPRINT Design
Tools. To analyse QoS data: in Grafana: dashboards→ execution time constraints.

Normally, updates should follow the aforementioned AI–SPRINT design → TOSCARIZER → IM → OSCAR
pipeline. However, manual changes are possible. Steps to manually amend QoS configuration:

1. Edit the configuration file under aisprint/deployments/XXX/ams/qos_constraints_YYY.yaml.

60 www.ai-sprint-project.eu

AI-SPRINT Studio

2. Update the configuration with:
kubectl -n ai-sprint-monitoring cp qos_constraints_YYY.yaml $(kubectl -n ai-sprint-monitoring get
pods -l=app=ai-sprint-monit-manager -o
jsonpath="{.items[0].metadata.name}"):templates/qos_constraints.yaml

3. Trigger re–configuration with:
kubectl -n ai-sprint-monitoring exec deployment/ai-sprint-monit-manager -- ./setup_app.sh -n
oscar-svc

4. The dashboards update automatically in the background.

For the curious ones, internal calculations and constraints syntax have been thoroughly described in
AI–SPRINT Deliverables D2.3 and D3.4.

11.1.3 Custom metrics
AMS allows monitoring user–defined metrics and, as already mentioned, the mask detector application
reports detected number of people with and without masks.

Steps to define a custom metrics dashboard and an alert:

1. Create the following custom_setup.yaml file:

with app name, metric and field names matching the deployed application.
2. Upload the configuration with:

kubectl -n ai-sprint-monitoring cp custom_setup.yaml $(kubectl -n ai-sprint-monitoring get pods
-l=app=ai-sprint-monit-manager -o
jsonpath="{.items[0].metadata.name}"):templates/custom_setup.yaml

3. Trigger (re–)configuration with:
kubectl -n ai-sprint-monitoring exec deployment/ai-sprint-monit-manager -- ./setup_app_custom.sh

4. The dashboards update automatically in the background. To analyse: in Grafana:
dashboards → custom metrics.

61 www.ai-sprint-project.eu

AI-SPRINT Studio

Additionally, it is possible to integrate a custom metric alert with an external API. In case the metric value
exceeds the defined threshold a HTTP post will be sent to the specified URL.

11.5 SPACE4AI-R
SPACE4AI-R is a set of runtime components in charge to adapt the deployment to the run conditions
(network connectivity and congestion, CPUs load, etc.).

SPACE4AI-R consist of:

1. the OPTIMIZER that, based on component load and network congestion, computes the optimal
application deployment;

2. the AML that is a library queried by the Optimizer to make the optimal deployment design;
3. the RUNTIME MANAGER that orchestrates all the runtime tools and seamlessly apply (without data

loss) the optimal deployment.

SPACE4AI-R has both:

1. active monitoring: deployment status is checked every two minutes;
2. push notification: REST API called by AMS.

Runtime components architecture and interaction and are the following:

62 www.ai-sprint-project.eu

AI-SPRINT Studio

Installation
The components are deployed within the AI-SPRINT application and they do not require any user action.

The source code is public available here:

ai-sprint-eu-project/space4ai-r-optimizer (github.com)

ai-sprint-eu-project/space4ai-r-runtime-manager (github.com)

Output
SPACE4AI-R output is the optimal deployment configuration that is stored in the AI-SPRINT application
deployment folder (aisprint\deployments). The folder hosts the initial deployment
(aisprint\deployments)\base) the optimal deployment (aisprint\deployments\optimal_deployment), the
current deployment (aisprint\deployments\current_deployment) as far as an history of the applied
configuration (aisprint\deployments\current_deployment_DATE_TIME) as in the following example:

|-- aisprint
| |-- deployments
| | |-- base
| | |-- current_deployment
| | |-- current_deployment_2023-10-18-12-47-43-768529
| | |-- current_deployment_2023-10-20-14-17-37-636495
| | |-- current_deployment_2023-10-20-14-26-18-165259
| | |-- current_deployment_2023-10-20-15-20-57-707952
| | |-- current_deployment_2023-10-20-16-35-34-479136
| | `-- optimal_deployment
| |-- designs
| `-- logs
|-- ams
|-- im
|-- oscar
|-- oscarp
|-- pycompss
|-- space4ai-d
|-- space4ai-r
`-- src

63 www.ai-sprint-project.eu

https://github.com/ai-sprint-eu-project/space4ai-r-optimizer
https://github.com/ai-sprint-eu-project/space4ai-r-runtime-manager

