

This project has received funding from the European Union's Horizon 2020 research
and innovation programme under grant agreement No 101016798.

Sentinel-2 pre-processing

Technical documentation

 Page | 2

Table of Contents
1 Introduction 3

2 Sentinel-2 pre-processing 3

2.1 Summary 3

2.2 Input 3

2.3 Exposed Parameters 3

2.4 Processing 4

2.5 Output 5

2.6 How to use 5

2.6.1 Some examples 5

Appendix: docker registry access 7

Technical documentation

 Page | 3

1 Introduction
The AI4Copernicus consortium provides a set of services and resources made available from the
Security, Agriculture, Energy and Health communities for the open calls winners.

The development of these bootstrapping services aimed to reduce the time and resources of the
bidders in different tasks as data access (EO and ancillary data), pre-processing, labelling datasets,
ML algorithm definition. The AI4Copernicus consortium support to the bidders allows to address
open calls winner’s effort on the development of innovative services based on AI.

The Security Bootstrapping services and resources have been developed considering the objective of
the open calls, which was “the development of EO applications leveraging on AI algorithms to detect,
identify and/or predict features and events in response to current Security challenges. The
applications are expected to exploit EO data, in conjunction with relevant collateral data sources as
suitable (e.g. geolocalization, AIS, statistical data, climate/weather, in-situ sensors…) with the use of
the latest technologies, also contributing to shape the development of a Digital Twin Earth (DTE) for
Security”.

The following section describe the Sentinel-2 pre-processing service, developed by SatCen in the
frame of the Security domain.

2 Sentinel-2 pre-processing
2.1 Summary
The Sentinel-2 pre-processing pipeline is available as a dockerized application (see Annex) that can
be executed in any environment with a properly configured Docker client.

This pipeline processes a S2 product in native format to generate a product with a common resolution
for all the bands in GeoTiff format. The process allows to apply a land/sea mask and a cloud mask in
order to have an output product ready for analysis.

Several parameters are exposed (e.g. DEM, cloud mask type), including when possible, a default value
to facilitate the use by non-expert users.

2.2 Input
The input of this pipeline is a Sentinel-2 L2A product in its native SENTINEL-SAFE format (zipped or
unzipped products are both supported).

They are also supported Sentinel-2 L1c products in its native SENTINEL-SAFE format. In this case,
sen2cor tool is used internally to process the L2A product before preprocessing.

2.3 Exposed Parameters

Table 1. Exposed parameters in Sentinel-2 pre-processing
 Parameter Valid values Default Value

Technical documentation

 Page | 4

Resolution: output resolution in meters. The minimum
value recommended is the default value (10m)

Any in meters 10

Bands Any combination of S2 L2A
bands: B1,B2, B3, B4, B5, B6,
B7, B8, B8A, B9, B10, B11, B12

B2, B3, B4, B8

Land/Sea mask: type of pixels to be removed
considering SRTM3Sec. If “Sea” is selected, al values
with elevation=0 in SRTM 3Sec will be set to NoData.

Land/Sea/None None

AoI: Area of Interest WKT polygon or path to vector
file

None

CloudMask: assign NoData to cloudy pixels according to
the cloud mask type selected

L1C/L2A/other?/None None

Upsampling method Nearest/Bilinear/Bicubic Nearest

Downsampling method First,Min,Max,Mean,Median First

Flag Downsampling method First,FlagAnd,FlagOr,FlagMedia
nAnd,FlagMedianOr

First

Projection: output projection Any supported by SNAP UTM(Auto)

Output format: output format Supported by GDAL and SNAP GeoTiff

2.4 Processing
The main workflow has been designed using SNAP. The SNAP graph executed is represented in figure
below.

Figure 1. S2 pre-processing graph.

Where:

Technical documentation

 Page | 5

• Read: the operator in charge of reading a product to the SNAP internal data model.
• S2Resampling: this operator resamples the product to a common resolution.
• Land/Sea Mask: It applies land/sea mask based on srtm 3sec.
• BandMaths: it is used to compute the cloud mask when needed.
• Subset: it filters out the non-desired bands and crop to the AoI.
• Reproject: reprojects to the selected projection.
• Write: write the output product to the desired format.

(More information about the specific operators can be found in the SNAP help and documentation.)

2.5 Output
The output is a GeoTiff (by default) terrain-corrected image containing the selected bands.
Depending on the selected parameters, pixels in sea/land or/and cloudy have been set to NoData.

2.6 How to use
Minimum requirements: 16GB of RAM.

Inside the docker, the pipeline can be found in /app/pipelines and can be executed with the
following command:

S2-preprocess --input “VALUE” [--bands “XX,XX,XX”] [--landseamask “VALUE”] [--
cloudmask “VALUE”] [--AoI “WKT”] [--resolution “VALUE”] [--upsampling “VALUE”] [-
-downsampling “VALUE”] [--projection “VALUE”] [--output_format “VALUE”] --outdir
“VALUE”

A concrete example could be:

S2-preprocess --input
"/2/S2B_MSIL2A_20230106T111349_N0509_R137_T30TUL_20230106T125051.SAFE" --AoI
"POLYGON((-5.25080726428997 40.89918079640174,-5.222971610006687
40.89929182499685, -5.225321849946173 40.87724899587295,-5.256095304153813
40.87763772395914,-5.25080726428997 40.89918079640174))" --bands "B4,B8" --outdir
"/1"

It can be also executed with “docker run” taking into account that a volume has to be mounted in
order to write on it the output file so it is accessible at the end of the processing.

docker run -v [local_path]:[container_path] DOCKER_IMAGE S2-preprocess --input
“VALUE” [--bands “XX,XX,XX”] [--landseamask “VALUE”] [--cloudmask “VALUE”] [--AoI
“WKT”] [--resolution “VALUE”] [--upsampling “VALUE”] [--downsampling “VALUE”] [--
projection “VALUE”] [--output_format “VALUE”] --outdir “VALUE”

In the case of any customization is needed in graph, it can be found in the docker and could be
adapted by the users and executed directly using gpt.

2.6.1 Some examples

Computation of pre-processed S2 in an area close to Sydney using a S2 image from March 2021. The
bands selected are B2, B3, B4 and B8 at 20 meters resolution.

Technical documentation

 Page | 6

S2-preprocess --input
/output/S2A_MSIL2A_20210315T000241_N0214_R030_T56HKH_20210315T020346.SAFE --bands
B2,B3,B4,B8 --resolution 20 -p "POLYGON((150.6266 -33.49, 150.952 -33.49, 150.952
-33.795, 150.6266 -33.795, 150.6266 -33.49))" --outdir /output/

Computation of pre-processed S2 using a S2 image from March 2021. The bands selected are B2, B3,
B4 at 60 meters resolution. Cloud mask is applied.

S2-preprocess --input
./S2A_MSIL2A_20210315T000241_N0214_R030_T56HKH_20210315T020346.SAFE --bands
B2,B3,B4 --resolution 60 --cloudmask L2A --outdir /output/

Technical documentation

 Page | 7

Appendix: docker registry access
A Docker registry is a storage and distribution system for Docker images. It is organised in Docker
repositories that contain all the versions published of a specific image. It allows the
developers/providers to tag and push their images that can be pulled by the users to run them.

CloudFerro has deployed an instance of Harbor (goharbor.io), which is an open source registry that
can be accessed in https://harborai4c.cloudferro.com/ .

Different users have been created for the service providers (with ‘Developer’ role) and another user
for the funded projects with ‘Guest’ role that allows them to pull the images.

Figure 2. Docker registry screenshot.

The typical steps for pulling and running the services are:

- Login to registry

docker login -u=[YOUR_USER] -p=[PASSWORD] harborai4c.cloudferro.com

- Pull images (example with security services image)

docker pull harborai4c.cloudferro.com/ai4copernicuswp5/security_services:1.0.1

- Run a container

docker run -it harborai4c.cloudferro.com/ai4copernicuswp5/security_services:1.0.1 bash

- Run a container with a volume (local folder mounted in container)

docker run -it -v /tmp/example_products/:/output harborai4c.cloudferro.com/ai4copernicuswp5/
security_services:1.0.1 bash

where /tmp/example_products is a local (Docker host) folder and /output is the folder in the
container

https://goharbor.io/
https://harborai4c.cloudferro.com/

Technical documentation

 Page | 8

- Copy files from/to the container

from Container to Docker Host

docker cp {options} CONTAINER:SRC_PATH DEST_PATH

from Docker Host to Container

docker cp {options} SRC_PATH CONTAINER:DEST_PATH

where the container can be obtained from docker ps

	1 Introduction
	2 Sentinel-2 pre-processing
	2.1 Summary
	2.2 Input
	2.3 Exposed Parameters
	2.4 Processing
	2.5 Output
	2.6 How to use
	2.6.1 Some examples

	Appendix: docker registry access

