

This project has received funding from the European Union's Horizon 2020 research
and innovation programme under grant agreement No 101016798.

Sentinel-2 change detection

Technical documentation

 Page | 2

Table of Contents
1 Introduction 3

2 Sentinel-2 change detection 3

2.1 Summary 3

2.2 Input 3

2.3 Exposed Parameters 3

2.4 Processing 4

2.5 Output 5

2.6 How to use 5

2.6.1 Examples 6

Appendix: docker registry access 8

Technical documentation

 Page | 3

1 Introduction
The AI4Copernicus consortium provides a set of services and resources made available from the
Security, Agriculture, Energy and Health communities for the open calls winners.

The development of these bootstrapping services aimed to reduce the time and resources of the
bidders in different tasks as data access (EO and ancillary data), pre-processing, labelling datasets,
ML algorithm definition. The AI4Copernicus consortium support to the bidders allows to address
open calls winner’s effort on the development of innovative services based on AI.

The Security Bootstrapping services and resources have been developed considering the objective of
the open calls, which was “the development of EO applications leveraging on AI algorithms to detect,
identify and/or predict features and events in response to current Security challenges. The
applications are expected to exploit EO data, in conjunction with relevant collateral data sources as
suitable (e.g. geolocalization, AIS, statistical data, climate/weather, in-situ sensors…) with the use of
the latest technologies, also contributing to shape the development of a Digital Twin Earth (DTE) for
Security”.

The following section describe the Sentinel-2 change detection service, developed by SatCen in the
frame of the Security domain.

2 Sentinel-2 change detection
2.1 Summary
The Sentinel-2 Change Detection pipeline is available as a dockerized application (see annex) that can
be executed in any environment with a properly configured Docker client.

This pipeline computes (and classifies) the changes using as input a pair of S2-L2A products by using
the Change Vector Analysis approach.

Several parameters are exposed (e.g. resolution, bands, number of change classes), including when
possible, a default value to facilitate the use by non-expert users.

2.2 Input
The input of this pipeline is a pair of Sentinel-2 L2A products in their native SENTINEL-SAFE format
(zipped or unzipped products are both supported). The inputs shall correspond to the same tile (e. g.
same relative orbit).

2.3 Exposed Parameters

Table 1. Exposed parameters in Sentinel-2 change detection
Parameter Valid values Default Value
Resolution: output resolution in meters. The minimum
value recommended is the default value (10m for IW
products and 5 m for SM products)

Any in meters 10m (IW), 5m
(SM)

Technical documentation

 Page | 4

Bands: list of S2 bands that are going to be used for
computing the changes.

Any combination of S2
L2A bands

B2,B3,B4,B8

AoI: Area of Interest WKT polygon or path to
vector file

None

Projection: output projection Any supported by SNAP WGS84

NumberOfClasses: number of classes in which changes
will be automatically classified.

Any integer 4

ReferenceVector: Reference vector to be used for
computing the angle in CVA methodology.

 1,0,0,…

Level of confidence: Any float value lower than
100.

99,99

Output format: output format Supported by GDAL and
SNAP

GeoTiff

2.4 Processing
The standard approach when computing changes is simplified in figure below.

Figure 1. Sentinel-2 Change detection processing flow.

The S2 change detection pipeline developed implements the following steps:

1. Pre-processing:

Technical documentation

 Page | 5

 . Resampling: Bands that are needed for the processing are resampled to the
common selected resolution. These bands include the bands selected by the user and
the scene classification bands. This step is performed using SNAP.
a. Radiometric correction/histogram matching: in order to minimize errors
caused by not accurate radiometric corrections (including atmospheric), a relative
radiometric correction is applied to one of the inputs. For this, it is computed a linear
regression using as references the pixels with less changes after removing the ones
affected by clouds or where the land cover is different.
b. Crop the image to the AoI.
c. Generate cloud masks.

2. Computation of normalized vector of differences in pre-processed images
3. Compute the module of the vector and angle with respect to the reference vector.
4. Compute binary mask of changes by assuming that difference between bands follow gaussian

distributions and the module of the change follows a chi-squared distribution:
● After having applied the radiometric correction/histogram matching in 1.b, it is

assumed that the difference of the same band in two images is following a Gaussian
distribution. The values that cannot be explained with this distribution are classified
as changes.

● When taking into account the full set of bands selected for the processing, the
amplitude of the change is computed with the normalized differences and it is
assumed that it follows a chi-squared distribution.

5. Classify changes using K-means algorithm in the polar representation of the vector of
differences (amplitude and angle).

Figure 2. Example of classified changes in the polar representation using K-means.

2.5 Output
The outputs are:

- CVA: GeoTiff image with two bands. The first band is the amplitude of the change and the
second band is the angle with respect to the reference vector.
- S2-CD: GeoTiff image with one band with pixel type Byte. It represents the classes of the
detected changes.

2.6 How to use
Minimum requirements: 16GB of RAM.

Inside the docker, the pipeline can be found in /app/pipelines and can be executed with the
following command:

Technical documentation

 Page | 6

S2-CD --input1 “VALUE” --input2 “VALUE” [--bands “XX,XX,XX”] [--AoI “WKT”] [--
resolution “VALUE”] [--projection “VALUE”] [--numberClasses “VALUE”] [--
referenceVector “VALUE”] [--levelConfidence “VALUE] [--output_format “VALUE”] --
outdir “VALUE”

It can be also executed with “docker run” taking into account that a volume has to be mounted in
order to write on it the output file so it is accessible at the end of the processing.

docker run -v [local_path]:[container_path] DOCKER_IMAGE S2-CD --input1 “VALUE”
--input2 “VALUE” [--bands “XX,XX,XX”] [--AoI “WKT”] [--resolution “VALUE”] [--
projection “VALUE”] [--numberClasses “VALUE”] [--referenceVector “VALUE”] [--
levelConfidence “VALUE] [--output_format “VALUE”] --outdir “VALUE”

If any customization is needed in the processing graph, it can be found in the docker and could be
adapted by the users and executed directly using gpt.

2.6.1 Examples

- Computation of S2 change detection to estimate area affected by a flooding that took place
close to Sydney in March 2021

S2-CD -i1
/output/S2A_MSIL2A_20210315T000241_N0214_R030_T56HKH_20210315T020346.zip -i2
/output/S2A_MSIL2A_20210325T000241_N0214_R030_T56HKH_20210325T022649.zip -b
B3,B4,B8 -r 20 -p "POLYGON((150.6266 -33.49, 150.952 -33.49, 150.952 -33.795,
150.6266 -33.795, 150.6266 -33.49))" -outdir /output/

Technical documentation

 Page | 7

Technical documentation

 Page | 8

Appendix: docker registry access
A Docker registry is a storage and distribution system for Docker images. It is organised in Docker
repositories that contain all the versions published of a specific image. It allows the
developers/providers to tag and push their images that can be pulled by the users to run them.

CloudFerro has deployed an instance of Harbor (goharbor.io), which is an open source registry that
can be accessed in https://harborai4c.cloudferro.com/ .

Different users have been created for the service providers (with ‘Developer’ role) and another user
for the funded projects with ‘Guest’ role that allows them to pull the images.

Figure 3. Docker registry screenshot.

The typical steps for pulling and running the services are:

- Login to registry

docker login -u=[YOUR_USER] -p=[PASSWORD] harborai4c.cloudferro.com

- Pull images (example with security services image)

docker pull harborai4c.cloudferro.com/ai4copernicuswp5/security_services:1.0.1

- Run a container

docker run -it harborai4c.cloudferro.com/ai4copernicuswp5/security_services:1.0.1 bash

- Run a container with a volume (local folder mounted in container)

docker run -it -v /tmp/example_products/:/output harborai4c.cloudferro.com/ai4copernicuswp5/
security_services:1.0.1 bash

where /tmp/example_products is a local (Docker host) folder and /output is the folder in the
container

https://goharbor.io/
https://harborai4c.cloudferro.com/

Technical documentation

 Page | 9

- Copy files from/to the container

from Container to Docker Host

docker cp {options} CONTAINER:SRC_PATH DEST_PATH

from Docker Host to Container

docker cp {options} SRC_PATH CONTAINER:DEST_PATH

where the container can be obtained from docker ps

	1 Introduction
	2 Sentinel-2 change detection
	2.1 Summary
	2.2 Input
	2.3 Exposed Parameters
	2.4 Processing
	2.5 Output
	2.6 How to use
	2.6.1 Examples

	Appendix: docker registry access

