

This project has received funding from the European Union's Horizon 2020 research
and innovation programme under grant agreement No 101016798.

Sentinel-1 change detection

Technical documentation

 Page | 2

Table of Contents
1 Introduction 3

2 Sentinel-1 change detection 3

2.1 Summary 3

2.2 Input 3

2.3 Exposed Parameters 4

2.4 Processing 4

2.5 Output 6

2.6 How to use 6

2.6.1 Some examples 7

Appendix: docker registry access 8

Technical documentation

 Page | 3

1 Introduction
The AI4Copernicus consortium provides a set of services and resources made available from the
Security, Agriculture, Energy and Health communities for the open calls winners.

The development of these bootstrapping services aimed to reduce the time and resources of the
bidders in different tasks as data access (EO and ancillary data), pre-processing, labelling datasets,
ML algorithm definition. The AI4Copernicus consortium support to the bidders allows to address
open calls winner’s effort on the development of innovative services based on AI.

The Security Bootstrapping services and resources have been developed considering the objective of
the open calls, which was “the development of EO applications leveraging on AI algorithms to detect,
identify and/or predict features and events in response to current Security challenges. The
applications are expected to exploit EO data, in conjunction with relevant collateral data sources as
suitable (e.g. geolocalization, AIS, statistical data, climate/weather, in-situ sensors…) with the use of
the latest technologies, also contributing to shape the development of a Digital Twin Earth (DTE) for
Security”.

The following section describe the Sentinel-1 change detection service, developed by SatCen in the
frame of the Security domain.

2 Sentinel-1 change detection
2.1 Summary
The Sentinel-1 Change Detection resource is available as a dockerized application (see annex) that
can be executed in any environment with a properly configured Docker client.

This pipeline processes pairs of S1 SLC products in native format to generate a series of products to
assess the changes between both images. These products include:

- the coherence (the amplitude of correlation between the images),
- the ACD (Amplitude Change Detection), which is a RGB composite of the backscatter of the

input images
- the MTC (Multi-Temporal Coherence), which is a RGB composite of the backscatters and the

coherence
- binary mask of changes

Several parameters are exposed (e.g. resolution, speckle), including when possible, a default value
to facilitate the use by non-expert users.

2.2 Input
The input of this pipeline is a pair of Sentinel-1 SLC product in their native SENTINEL-SAFE format
(zipped or unzipped product are both supported). The inputs shall be acquired with the same
acquisition geometry (i.e. same relative orbit), which means in practice that they are acquired in a
multiple of six days (6, 12, 18 days) of difference (considering both satellites, S1A and S1B). The

Technical documentation

 Page | 4

validity of the inputs will be checked by the pipeline and when the requirements are not fulfilled, an
error will be raised.

2.3 Exposed Parameters

Table 1. Exposed parameters in Sentinel-1 change detection
Parameter Valid values Default Value
Resolution: output resolution in meters. The minimum
value recommended is the default value (10m for IW
products and 5 m for SM products)

Any in meters 10m (IW), 5m
(SM)

CalibrationOutput: backscatter convention selected for
the output. Each value uses a different reference area.

Sigma, Gamma, Beta Sigma

Polarization VV,VH… (valid values
depend on the specific
product)

VV

Land/Sea mask: type of pixels to be removed
considering SRTM3Sec. If “Sea” is selected, all values
with elevation=0 in SRTM 3Sec will be set to NoData.

Land/Sea/None None

AoI: Area of Interest WKT polygon or path to
vector file

None

Speckle-filter
(+ specific parameters if needed)

Supported by SNAP Lee Sigma

Projection: output projection Any supported by SNAP WGS84

Output format: output format Supported by GDAL and
SNAP

GeoTiff

2.4 Processing
The pipeline has been designed mostly using SNAP and GDAL. The SNAP graphs executed to
generate the coherence are represented in figures below.

Technical documentation

 Page | 5

Figure 1. Sentinel-1 IW processing.

Figure 2. Sentinel-1 SM processing.

Where:

• Read: the operator in charge of reading a product to the SNAP internal data model.
• Apply-Orbit-File: search, download and apply the corrected information about the orbit that

is provided some days after the S1 acquisition to improve the geolocation.
• TOPSAR-Split: split the product using the indicated subswath.
• Back-Geocoding: co-register the input products.
• ESD: Enhance the coregistration when more than one burst have been selected.
• Calibration: convert pixel values to calibrated sigma0, gamma0 or beta0
• Speckle-Filter: applies filter to reduce speckle

Technical documentation

 Page | 6

• Coherence: estimates the coherence
• Terrain-Correction: orthorectify the product
• CreateStack + Cross-Correlation + Warp: coregister the input products.
• Write: write the output product to the desired format.

(More information about the specific operators can be found in the SNAP help and documentation.)

2.5 Output
The outputs are:

• Coherence: GeoTiff image that represents the amplitude of correlation between the images.
The pixel type is float32.

• Backscatters: 2 GeoTiff products (one for each of the input images) with one float32 band
representing the calibrated backscatter.

• ACD: a RGB composite of the backscatter of the input images.
o GeoTiff with three bands. R: backscatter of image 1; G : backscatter of image 2; B:

backscatter of image 2
o Pixel type is Byte, where byte value is computed by data conversion of float values

using a linear interpolation taking as min and max values the percentiles 2.5 and 7.5.
• MTC (Multi-Temporal Coherence): a RGB composite of the backscatters and the coherence

o GeoTiff with three bands. R: backscatter of image 1; G : backscatter of image 2; B:
coherence

o Pixel type is Byte, where byte value is computed by data conversion of float values
using a linear interpolation taking as min and max values the percentiles 2.5 and 7.5
for backscatter band. For the coherence band the linear conversion is (0,1)->(0,255)

2.6 How to use
Minimum requirements: 32GB of RAM.

Inside the docker, the pipeline can be found in /app/pipelines and can be executed with the
following command:

S1-CD --input1 “VALUE” --input2 “VALUE” [--calibration “VALUE”] [--polarization
“VALUE”] [--landseamask “VALUE”] [--speckle “VALUE”] [--AoI “WKT”] [--resolution
“VALUE”] [--projection “VALUE”] [--output_format “VALUE”] --outdir “VALUE”

It can be also executed with “docker run” taking into account that a volume has to be mounted in
order to write on it the output file so it is accessible at the end of the processing.

docker run -v [local_path]:[container_path] DOCKER_IMAGE S1-CD --input1 “VALUE”
--input2 “VALUE” [--calibration “VALUE”] [--polarization “VALUE”] [--landseamask
“VALUE”] [--speckle “VALUE”] [--AoI “WKT”] [--resolution “VALUE”] [--projection
“VALUE”] [--output_format “VALUE”] --outdir “VALUE”

If any customization is needed in the processing graphs, they can be found in the docker and could
be adapted by the users and executed directly using gpt.

Technical documentation

 Page | 7

2.6.1 Some examples

Computation of change detection in an area close to Sydney affected by a flooding in March 2021.
They are used two inputs acquired respectively before and after the event:

S1-CD -i1
/output/S1A_IW_SLC__1SDV_20210312T191528_20210312T191555_036969_045983_7048.zip -
i2
/output/S1A_IW_SLC__1SDV_20210324T191529_20210324T191555_037144_045F93_9AB1.zip -
r 20 -p "POLYGON((150.6266 -33.49, 150.952 -33.49, 150.952 -33.795, 150.6266 -
33.795, 150.6266 -33.49))" -outdir /output/

The command generates the following products:

Technical documentation

 Page | 8

Appendix: docker registry access
A Docker registry is a storage and distribution system for Docker images. It is organised in Docker
repositories that contain all the versions published of a specific image. It allows the
developers/providers to tag and push their images that can be pulled by the users to run them.

CloudFerro has deployed an instance of Harbor (goharbor.io), which is an open source registry that
can be accessed in https://harborai4c.cloudferro.com/ .

Different users have been created for the service providers (with ‘Developer’ role) and another user
for the funded projects with ‘Guest’ role that allows them to pull the images.

Figure 3. Docker registry screenshot.

The typical steps for pulling and running the services are:

- Login to registry

docker login -u=[YOUR_USER] -p=[PASSWORD] harborai4c.cloudferro.com

- Pull images (example with security services image)

docker pull harborai4c.cloudferro.com/ai4copernicuswp5/security_services:1.0.1

- Run a container

docker run -it harborai4c.cloudferro.com/ai4copernicuswp5/security_services:1.0.1 bash

- Run a container with a volume (local folder mounted in container)

docker run -it -v /tmp/example_products/:/output harborai4c.cloudferro.com/ai4copernicuswp5/
security_services:1.0.1 bash

where /tmp/example_products is a local (Docker host) folder and /output is the folder in the
container

https://goharbor.io/
https://harborai4c.cloudferro.com/

Technical documentation

 Page | 9

- Copy files from/to the container

from Container to Docker Host

docker cp {options} CONTAINER:SRC_PATH DEST_PATH

from Docker Host to Container

docker cp {options} SRC_PATH CONTAINER:DEST_PATH

where the container can be obtained from docker ps

	1 Introduction
	2 Sentinel-1 change detection
	2.1 Summary
	2.2 Input
	2.3 Exposed Parameters
	2.4 Processing
	2.5 Output
	2.6 How to use
	2.6.1 Some examples

	Appendix: docker registry access

