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Abstract

DTW Mean is a Matlab library that provides implementations of two mean algorithms for
computing a sample mean of time series under Dynamic Time Warping (DTW). The time
series can be multivariate and of varying length. The algorithms return heuristic solutions
to the NP-hard DTW mean problem. Moreover, the library contains a DTW-based k-means
implementation, which is suitable for warping invariant time series clustering. Optionally, the
sample time series can have missing values. Those will be estimated during the clustering
process.
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1. The DTW Mean Problem

Time series are data sequences that consist of time-dependent observations. Examples of time
series include pollution sensor data, wheather recordings, audio signals and motion gestures.
Time series often vary in length and speed. To cope with these temporal variations, the Dynamic
Time Warping (DTW) distance is frequently used. The idea of DTW is to align two time series
such that the Euclidian distance of the aligned time series is minimal.

Depending on the problem, a Euclidean sample mean (i.e. arithmetic mean) of a sample
of equal-length time series may not be appropriate. Particularly, if the sample time series are
affected by distortions along the time series, a Euclidean mean often smooths the shape of the
time series which can lead to loss of information. This problem is illustrated in Figure 1. In this
figure, the two sample time series hav a similar shape, both start flat, the have a peak followed
by a valley and go back to a flat region. However, the shapes are affected by distortions along
the time axis so that in Euclidean view the peak of the upper time series is aligned to the valley
of the lower time series. Hence, the Euclidean mean smooths out these shapes. In contrast, the
DTW mean aligns the time series properly and builds the mean based on these alignments.

To formalize the DTW Mean problem, suppose that X =
(
x(1), . . . , x(N)

)
is a sample of N

time series x(i). Then a (sample) mean of X under DTW is any time series that minimizes the
Fréchet function

F (x) =
1

N

N∑
k=1

dtw2
(
x, x(k)

)
,

where dtw is the DTW distance. Finding a sample mean under DTW is NP-hard [1].

2. Sample mean algorithms

DTW Mean provides two heuristic strategies to optimize the Fréchet function, a stochastic
subgradient (SSG) method and a majorize minimize (MM) algorithm, which is also known as
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Figure 1: Two sample time series (black) and their means (blue). The green lines illustrate the alignments.

Algorithm 1 k-means DTW

1: procedure k-means dtw(X = (x1, . . . , xN ), k)
2: Randomly initialize centroids µ1, . . . , µk ∈ X
3: Initialize clusters C1 = {}, . . . , Ck = {}
4: repeat (iteration t)
5: //*** Cluster assignment step **********************************//

6: for all i = 1, . . . , k do
7: C

(t)
i = {xj | dtw2(xj , µ

(t)
i ) ≤ dtw2(xj , µ

(t)
i∗ ) for all i∗ = 1, . . . , k}

8: end for
9: //*** Mean update step *****************************************//

10: for all i = 1, . . . , k do
11: µ

(t+1)
i = DTW-Mean(C

(t)
i )

12: end for
13: until termination
14: return µ1, . . . , µk, C
15: end procedure

DTW Barycenter Averaging (DBA) [2]. For a technical description of these algorithms see [3].
The file SSG.m contains an implementation of the SSG algorithm, MM.m is an implementation of
the MM algorithm. The input and output parameters are documented in the source code. For
usability, both implementations provide default values for all parameters, except the dataset X.
The file example dtw mean.m demonstrates the use of the sample mean algorithms.

3. DTW based k-means

The file kmeans dtw.m provides a k-means implementation which uses a DTW mean algorithm
for the mean computation step and the DTW distance as cost, cf. Algorithm 1.

The k-means dtw algorithm is useful for warping invariant clustering, as demonstrated in
the file example kmeans dtw.m. In this example, two classes of data were generated. Class 1
contains 1 peak at a random position, class 2 contains 2 peaks at random positions. Hence the
invariances of the classes are time-shifts which are special cases of warping. Examples of the
generated data are illustrated in Figure 2.

The Euclidean k-means algorithm with arithmetic mean yields wrong cluster assignments
and spurious centroids, as illustrated in Figure 3.

The k-means dtw algorithm usually yields a high accuracy in cluster assignments and sound
centroids, as illustrated in Figure 4.
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Figure 2: Examples from the generated dataset

0 10 20 30 40 50

0

1

2

3

4

Class 1

0 10 20 30 40 50

-1

0

1

2

3

Class 2

k-means Euclid

Figure 3: Centroids found by the Euclidean k-means algorithm.
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Figure 4: Centroids found by the DTW based k-means algorithm (Algorithm 1).

3



0 20 40 60 80 100
-3

-2

-1

0

1

2

3

estimated

original

ground truth

0 20 40 60 80 100
-3

-2

-1

0

1

2

3

estimated

original

ground truth

0 20 40 60 80 100

-2

-1

0

1

2 estimated

original

ground truth

0 20 40 60 80 100
-2

-1

0

1

2

3

estimated

original

ground truth

Figure 5: Imputation examples from the DTW based k-means algorithm with data imputation.

4. DTW based k-means for time series with missing values

The file kmeans dtw imputation.m is a variant of the k-means implementation where the sample
time series can have missing values. During the clustering process, the missing values are
estimated based on warping the time series with missing values to its cluster centroid. The
file example kmeans dtw imputation.m provides a demonstration yielding imputation results
comparable to those shown in Figure 5.
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