
Evaluation and re-usable implementation of DL-based
approaches for Entity Recognition

Master Thesis
Universität Bonn

Supervisor: Dr. Jens Fisseler

First Examiner: Prof. Dr. Jens Lehmann
Second Examiner: Prof. Dr. Sven Behnke

Gugu Andel

Matriculation number : 3198522

July, 2021

Declaration of Authorship
I hereby declare and confirm that this thesis has been written independently by myself and
that none other than the specified sources and aids were used, and that any citations have been
marked.

Gugu Andel

Signed:

Place, Date:

Acknowledgements

I wish to thank everyone without whom I would not have been able to complete this project.
First and foremost, I would like to express my gratitude to my supervisor, Dr. Jens Fisseler,
whose knowledge and suggestions guided me through the whole process. I am extremely grate-
ful for all the productive meetings. Special thanks to my colleagues, Sogol H., Lukas W. and
Prabhu C. for offering their help and support, when I needed it.

I wish to extend my special thanks to my professors at the Computer Science department, whose
lectures helped me further develop my knowledge and skills in the field of Intelligent Systems.

I can not forget to thank my family for supporting me financially and emotionally during these
three long years away from home. Without them, I would not be where I am today. This thesis
is dedicated to them.

Abstract

Named-entity recognition (NER) aims to identify and label instances of predefined entities in
a chunk of text. Even though conceptually simple, it is a challenging task that requires some
amount of context and a good understanding of what constitutes an entity. Being a precursor to
other natural language applications such as question answering and text summarization, it is es-
sential to have high-quality NER systems. For a long time, they have relied on domain-specific
knowledge or resources such as gazetteers to perform well. In the past decade, deep learning
(DL) techniques have been applied to NER. They do not resort to any external resources and
have achieved state-of-the-art results.

This thesis investigates several aspects of DL-based approaches for NER. Recent improve-
ments mainly come from utilizing unsupervised language model pretraining to produce rep-
resentations depending on a word’s contextual use. Intuitively, more informative embeddings
lead to better generalization, that is, detecting mentions that do not appear in the training data
for NER models. Several word representations are evaluated for German, using the two biggest
available datasets CoNLL-03 and GermEval. The results show that recent contextualized repre-
sentations improve the entity extraction performance on both datasets, due to being more robust
against entity type ambiguities (e.g. Is "Washington" a person or a location?) or lengthy entities
(e.g publication titles).

Such embeddings are useful for multilingual NER too. Two approaches for generating
multilingual embeddings are pitted against each other, in order to find out which is the most
useful for extracting entities in a mix of German, English and Dutch data.

Another investigated aspect is improving the performance on "low-data" domains through
transfer learning, using finetuning. This is motivated by the fact that neural models tend to un-
derperform, due to lack of sufficient data. Finetuning a pre-trained model using contextualized
embeddings significantly improves the performance on a relatively small annotated German
dataset from Europarl.

The final step of this work is providing a re-usable implementation of a DL-based NER
model within a framework for building NLP pipelines such as DKPro Core. Challenges of
integrating an external Python-based model in a Java-based framework are investigated.

Contents

1 Introduction 2
1.1 Motivation . 4
1.2 Contributions . 4

2 Named-entity Recognition 6
2.1 Definition of NER . 6
2.2 Traditional approaches for Named-Entity Recognition 7

2.2.1 Rule-based Approaches . 7
2.2.2 Unsupervised Learning Approaches 8
2.2.3 Supervised Learning Approaches . 8

2.3 Deep Learning-based Approaches . 9
2.3.1 Input word representations . 11
2.3.2 Context Encoders . 12

Recurrent Neural Network . 12
Long Short-Term Memory Network 12
Bidirectional LSTM Network . 14
Language Models . 14
Transformers . 15

2.3.3 Tag Decoders . 17
Softmax . 17
Conditional Random Field . 18

2.4 Evaluation . 19
2.5 German NER . 20

2.5.1 German NER datasets . 20
CoNLL-03 . 20
GermEval . 21

2.5.2 Related work in German NER . 21

3 Comparative evaluation of embeddings for German NER 24
3.1 Chosen architecture for evaluation . 24
3.2 Evaluation . 24
3.3 Datasets . 26

3.3.1 Dataset pre-processing . 26

ii Contents

3.4 Chosen embeddings . 26
3.5 Experiment . 27

3.5.1 Experimental setup . 27
3.5.2 Model characteristics and training parameters 28
3.5.3 Implementation, Training and Tagging Speed 30

3.6 Results . 30
3.6.1 Comparative evaluation . 30
3.6.2 Fine-grained evaluation . 31

Model-wise analysis . 32
Bucket-wise analysis . 33

3.6.3 Contributing in German NER . 33

4 NER performance across other domain settings 36
4.1 Finetuning for a "small-data" scenario . 36

4.1.1 Experimental setup . 37
4.1.2 Training and training parameters . 37
4.1.3 Results . 37

4.2 Building a multilingual NER model exploiting mBERT 39
4.2.1 Experimental setup . 40
4.2.2 Results . 40

5 Python-based model integration with DKPro Core 41
5.1 NER models as part of pipelines . 41
5.2 Workflow . 42
5.3 Challenges . 43

6 Discussion and Conclusion 45
6.1 Future Work . 46

Appendices 47

A Appendix 48
A.1 Bucket-wise analysis . 48
A.2 Breakdown of the before-finetuning results on Europarl. 48
A.3 Bucketing Interval Strategy . 48

List of Figures

2.1 NER task illustration . 6
2.2 Example of type ambiguity in the use of name "Bayern" 7
2.3 Structure of a simple feedforward neural network 9
2.4 Building blocks of a typical DL-based NER model 10
2.5 An unrolled RNN model . 12
2.6 How an LSTM unit works, explained in 4 steps. a) Forget gate layer decides

what information to forget from the old cell state. b) Input gate layer decides
the new information that will be stored in the cell state. c) Cell state is updated.
d) Output gate layer decides what to output. Images are taken from Colah’s blog. 14

2.7 Bi-LSTM . 15
2.8 Transformer architecture . 16
2.9 Example of a NER prediction . 20

3.1 An example of the evaluation methodology. eLen (entity length) is one of the
attributes of the entity "New York". Performance can be droken down over the
defined attribute values. 25

3.2 BiLSTM-CRF module . 28
3.3 BASE . 28
3.4 BASE+CHAR . 29
3.5 BASE+LM . 29
3.6 Characteristics of mBERT, GBERT, GELECTRA and FLAIR language model. 29

4.1 Breakdown of the before-finetuning scores for BASE. Red and blue represent
the scores for the model pre-trained on CoNLL-03 and GermEval, respectively. 39

5.1 An NLP pipeline . 41
5.2 DKPRo Core Pipeline using a Python-based NER model 43

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

List of Tables

2.1 Performance scores reported by each paper for the NER task in German. 23

3.1 Number of sentences for each set . 26
3.2 Dataset statistics . 26
3.3 Types of embeddings used and their dimensions 27
3.4 Summary of evaluation results or all proposed setups. 30
3.5 Model-wise measures, Spearman coefficient and standard deviation. 32
3.6 Bucket-wise analysis for each model. Numbers from 0 to 3 represent the four

buckets, from the smallest to the largest attribute values. The "number/number"
pairs in the horizontal axis represent the buckets of a specific attribute on which
a model achieved its worst and best performance, respectively. Green bins
represent the difference between the best and worst performance. 34

3.7 Summary of evaluation results and the best published scores of all proposed
setups on CoNLL-03 and GermEval. 34

4.1 Europarl statistics . 36
4.2 Evaluation results on the test set of Europarl before and after finetuning 38
4.3 Performance scores for multilingual NER . 40

A.1 Bucket-wise analysis for each model. Numbers from 0 to 3 represent the four
buckets, from the smallest to the largest attribute values. The "number/number"
pairs in the horizontal axis represent the buckets of a specific attribute on which
a model achieved its worst and best performance, respectively. Green bins
represent the difference between the best and worst performance. 49

A.2 Continued bucket-wise analysis . 50
A.3 Breakdown of the before-finetuning scores for BASE+CHAR, BASE+FLAIR

and BASE+mBERT . Red and blue represent the scores for the model pre-
trained on CoNLL-03 and GermEval, respectively. 51

A.4 Breakdown of the before-finetuning scores forBASE+GBERT andBASE+GELECTRA.
Red and blue represent the scores for the model pre-trained on CoNLL-03 and
GermEval, respectively. 52

A.5 Boundary values for GermEval . 53
A.6 Boundary values for CoNLL . 53

Chapter 1
Introduction

Natural Language Processing (NLP) is a branch of Artificial Intelligence (AI) that enables com-
puters to understand human language in the form of text and speech. It is the engine of software
that perform translations between languages, respond to questions or spoken commands and
summarize large amounts of text in a short amount of time. NLP can be found around us in
many forms, such as virtual assistants, chatbots, translation engines and different consumer-
related services. It plays an important role even in enterprise solutions that improve employee
performance and engagement, but also simplify business processes.

Some of the different tasks and applications possible with current NLP techniques are:

Speech recognition Converting voice data into text data. It is useful for applications respond-
ing to voice commands or answer spoken questions.

Part-of-Speech Tagging Determining the part of speech of a word in a sentence, based on its
use, e.g. "gehe" as a verb in "Ich gehe zum Supermarkt.".

Word sense disambiguation Selecting the meaning of a word with multiple meanings, based
on the context it is being used. For example, in "Du bist nicht von der Steuer befreit."
Steuer means tax and in "Er drehte das Steuer nach rechts." it means steering wheel.

Named-entity Recognition Identifying proper nouns such as people names, places, brands etc.
Such nouns are often referred to as entities. Examples of entities are "Deutschland" as a
location or "Leslie" as a person.

Coreference resolution Finding all the expressions that refer to the same entity. For example,
"Nordrhein Westfalen" and "NRW" refer to the same state in Germany.

Sentiment Analysis Extracting feelings and emotions from text.

Natural Language Generation (Text-to-Speech) Converting text data into voice data.

Recognizing and extracting entities is a fundamental task and a core process of NLP. Named-
entity recognition (NER), sometimes referred to as entity chunking, extraction, or identification,
is the first step in many tasks that extract information from text data. It is particularly useful
for building a high-level overview in "large corpora" scenarios. References to the same entity

3

found in multiple documents help us establish connections between documents and group them
based on their subject similarity.

Use cases of NER include:

Search and recommendation engines By detecting mentions of entities in reviews, discus-
sions and other descriptive texts, NER improves the speed and relevance of search results
and recommendations.

Content classification Entities extracted by NER can be used to identify the subjects and
themes of different articles, making it easier to classify their content.

Human resources NER is used to summarize applicants’ CVs and categorize employee ques-
tions and complaints.

Academia NER highlights key terms and topics in academic corpora, helping students and
researchers find what they are looking for faster and easier.

Healthcare NER extracts relevant information from lab reports, prescriptions etc. This reduces
workload and provides better patient care standards.

The term Named-Entity Recognition was born in the Message Understanding Conferences
(MUC), which influenced IE research in the US in the 90s. At the time, they were focus-
ing on tasks where structured information of company activities and defense related activities
was extracted from unstructured text, such as newspaper articles [19]. It became obvious that
recognizing information units like names of people, locations and organizations, and numeric
expressions like date, time and money was important.

The ever increasing amount of information and IE applications required the expansion of
named-entity (NE) categories. The categories to be extracted depend on the target information
class of IE. The wider the task becomes, the more NE categories we need [48]. In biomedicine,
we might need to recognize names of proteins or genes; in news and articles, we might be more
interested in names of people, organizations or locations, maybe even dates and time. NEs can
be generic (person, location, organization) or domain-specific (proteins, enzymes, genes)

Early NER systems have achieved good performance, thanks to the human designed domain-
specific linguistic rules and features. In recent years, deep learning, empowered by word em-
beddings and semantic clues, has been successfully applied in NER. With minimal feature en-
gineering, DL-based NER systems have achieved state-of-the-art performance [48]. A con-
siderable number of studies have improved the NER results on many languages, by proposing
new DL-based architectures. Recent models rely on semantics and can generalize for multiple
domains and languages [2][35].

The NER performance is affected not only by the choice of the network architecture, but
also by the language itself. A lot of factors must be considered, such as morphology, similarity
to other languages or amount of available data. As German is a wide-spread and comparatively
well-resourced language, German NER has received its fair share of attention. Several state-of-
the-art DL-based approaches have been introduced in the past few years. It is interesting to see
that their performance on German texts has been traditionally lower than on other languages,
such as English, Polish, Dutch etc. Studies suggest that this is due to complex linguistic struc-
tures such as compounds, separation of verb prefixes and use of uppercase letters not only for
proper nouns but also regular nouns [5].

4 Introduction

1.1 Motivation
Compared to English, there is less work on German NER. Currently, there are two big annotated
datasets in German available to be used as benchmark datasets. Recent studies report scores on
GermEval dataset [4], while older papers have evaluated their approaches on the German part
of CoNLL-03 dataset [45].

Lample et al. [25] introduced a neural architecture based on bidirectional LSTMs and con-
ditional random fields and trained it on four languages, including German. The model used no
language-specific features or other external resources. Later, Riedl & Pado [40] showed that
such a model could benefit from training on multiple domains, thus improving Lample’s re-
sults. Recent improvements in many NLP tasks stem from the modern embeddings, which are
extracted from pre-trained deep language models [11][2]. They incorporate contextual informa-
tion and reduce the dependency of neural networks on domain- or task-specific data. In order
to generalize well, NER models have to see training examples from various domains. Even
though German is a relatively well-resourced language, the number of annotated datasets for
NER is small and they are mainly articles from Wikipedia or daily newspapers. On scarce-data
domains, transfer learning has shown to improve results for NER, but utilizing contextualized
embeddings in the process might be even more useful.

1.2 Contributions
This thesis makes the following contributions:

• A comparative evaluation between a set of word embeddings. Some of them have not
been evaluated before on all the available domains. New performance scores are re-
ported. More specifically, this work quantifies the impact of GBERT and GELECTRA on
CoNLL-03, character embeddings on GermEval and multilingual BERT on both datasets.

• Application of transfer learning for improving the performance on "low-data" settings.
Previous work has applied transfer learning on a BiLSTM-CRF model that exploits only
pre-trained word embeddings and character-level embeddings. This work includes recent
contextualized embeddings on a different dataset, Europarl.

• A single NER model for German, English, Dutch using multilingual BERT to generate
word representations.

• A reusable implementation of a DL-based NER model, as a custom tagger within DKPro
Core, a framework that collects third-party NLP tools and makes them interoperable.
This process encounters challenges and limitations, which are discussed after building
up an NLP pipeline that includes one of the pre-trained NER models from the earlier
comparative evaluation.

Chapter 2 describes in detail the concept of Named-entity Recognition and the deep learning
techniques applied in solving the task. The last section of the chapter focuses on German
NER, mainly on the available datasets and related work from recent years. Chapter 3 and
Chapter 4 describe the chosen methodology for the research, experiment setups and discuss the

Contributions 5

results. Chapter 5 identifies the need for making deep learning models part of NLP pipelines
and demonstrates an integration of a Python-based NER model within DKPro Core. Finally,
Chapter 6 summarizes everything and suggests future work or research directions.

Chapter 2
Named-entity Recognition

2.1 Definition of NER
In the field of IE, an entity is a word or a phrase that identifies an item from a set of items
with similar properties. What constitutes an entity type is task-specific; people, places, and
organizations are common, but gene or protein names might be relevant for some tasks.

The task of NER in NLP can be described as finding each mention of a named entity in a text
and label its type. The term NE is sometimes extended to include things that aren’t real-world
objects, including dates, times and even numerical expressions like prices.

Formally, given a sequence of N tokens s =< w1, w2, ..., wN >, NER outputs a list of
tuples < Is, Ie, t >, each of which is a named entity mentioned in s. Here, Is ∈ [1, N] and
Ie ∈ [1, N] are the start and the end indexes of an NE mention; t is the entity type from a
predefined category set (see Figure 2.1).

Figure 2.1: NER task illustration

Once all the NEs in a text have been extracted, they can be linked together in sets corre-
sponding to real-world entities, inferring, for example, that mentions of Nordrhein-Westfalen
and NRW refer to the same location. This is useful for linking text to information in structured
knowledge sources like Wikipedia.

Traditional approaches for Named-Entity Recognition 7

In addition to their use in extracting events and the relationship between participants, NEs
are useful for a variety of language processing tasks, i.e. in sentiment analysis we might want
to know a consumer’s sentiment towards a particular entity. Entities are a useful first stage
in semantic search. Semantic search refers to a collection of techniques, which enable search
engines to understand the concepts, meaning, and intent behind the queries from users. About
71% of search queries contain at least one NE [20]. Recognizing NEs in search queries would
help us to better understand user intents, hence to provide better search results. To incorporate
entities in search, entity-based language models, which consider individual terms as well as
term sequences that have been annotated as entities (both in documents and in queries), have
been proposed by Raviv et al. [37].

Despite being conceptually simple, NER is not an easy task. The category of an NE is highly
dependent on textual semantics and its surrounding context. There are two types of ambiguities
that make NER difficult:

• Ambiguity of segmentation. Deciding what is an entity and what is not, as well as where
the boundaries are, can be difficult at times.

• Type ambiguity. The mention Bayern can refer to a state in Germany, a football team,
or a song from a band (see Figure 2.2).

Figure 2.2: Example of type ambiguity in the use of name "Bayern"

2.2 Traditional approaches for Named-Entity Recognition
Before deep neural architectures were introduced, the approaches to NER were based on rules,
feature engineering and other supervised or unsupervised learning algorithms. I give a short
description for each method, without diving into details, as the focus is on the evaluation of the
recent DL-based approaches.

2.2.1 Rule-based Approaches
A rule-based NER system uses a set of rules written by linguists which are language-dependent
and help in the identification of entities in a document. For example, nouns starting with a
capital letter and followed by the word "GmbH" are very likely to be organizations. Rules are
also used to identify entities which are not listed in the dictionary. A dictionary, also known as
a gazetteer, consists of multiple lists containing names of entities, such as locations, organiza-
tions, colors, etc. In NER, a dictionary is used to find occurrences of names in text. However,
dictionaries can not store all the possible names. For example, if we want to detect unusual
people names, we use rules like "Mr. XXX" to find and tag them. Rules can be designed,
based on domain-specific gazetteers [14][42] and syntactic-lexical patterns [52], which assign

8 Named-entity Recognition

a label to the entity if the pattern is matched. Rule-based systems work very well when lexicon
is exhaustive. Due to domain-specific rules and incomplete dictionaries, high precision and low
recall are often observed from such systems. Furthermore, the systems cannot be transferred to
other domains. In other words, they will detect instances that they have seen before, but will
fail to recognize unseen ones.

2.2.2 Unsupervised Learning Approaches
In unsupervised learning, the algorithm finds structure in its input on its own, as the input data
has no labels. An unsupervised model can discover hidden patterns in data or learn features.
Clustering is a typical approach of unsupervised learning, where groups of similar examples
within the data are discovered. Clustering-based NER systems extract named-entities from the
clustered groups based on context similarity. Collins et al. [10] and Nadeau et al. [33] proposed
some of the most popular unsupervised systems that resorted to generic extraction patterns,
terminologies, corpus statistics (e.g. inverse document frequency) and shallow syntactic knowl-
edge (e.g. noun phrase chunking).

2.2.3 Supervised Learning Approaches
In supervised learning, a system receives example inputs and their desired outputs, in order
to learn a general rule that maps inputs to outputs. NER is treated as a multi-class classifi-
cation or a sequence labeling task. The annotated data samples are represented by carefully
designed features. A feature is an abstraction over text where a word is represented by one or
many Boolean or numeric values [43]. Word-level features (e.g. case, morphology and part-of-
speech tag) [53][44][26], list lookup features (e.g. Wikipedia gazetteer and DBpedia gazetteer)
[31][23][46], and document and corpus features (e.g. local syntax and multiple occurrences)
[36][54] have been widely used in various supervised NER systems. Some of the machine
learning algorithms, trained via supervised learning are:

Hidden Markov Model A generative model that assigns a joint probability to paired observa-
tion and label sequence. It uses features like capitalization, trigger words, previous tag
prediction, bag of words, gazetteers, etc. to represent simple binary relations and these
relations were used in conjunction with previously predicted labels. Bikel et al. [6] used
HMMs to build an NER system, called IdentiFinder, to identify and classify names, time
expressions, dates and numerical quantities.

Support Vector Machine A discriminative model that is trained on both positive and negative
examples to learn the distinction between two classes. Yamada et al. [50] proposed the
first SVM-based NER system for Japanese, which used some contextual information of
the words as well as orthographic word-level features. McNamee and Mayfield [30] used
language-related, orthography and punctuation features to train SVM classifiers.

Conditional Random Field One of the most prominent approaches used for NER. A linear
chain CRF confers to a labeler in which tag assignment for the current word depends
only on the tag of the previous word. McCallum and Li [29] exploited the ability of CRFs
to take context into account along with multiple features per word of the sentence and
built a CRF-based NER system.

Deep Learning-based Approaches 9

2.3 Deep Learning-based Approaches
Deep learning is a subset of machine learning in artificial intelligence (AI) that imitates the way
the human brain works to process data for detecting objects, recognizing speech, translating
languages and making decisions. With the increase in the amount of information in all forms
and from every region of the world, AI systems are being increasingly adapted for automated
support. They process large amounts of unstructured data that would normally take decades for
humans to understand and process.

Deep learning utilizes a hierarchical level of artificial neural networks, which are built like
the human brain, with neuron nodes connected together like a web. While traditional machine
learning models build analysis with data in a linear way, the hierarchical function of deep learn-
ing systems enables machines to process data with a nonlinear approach.

Figure 2.3 illustrates a basic feedforward neural network. The leftmost layer is called the
input layer and the rightmost layer is the output layer. The middle layers are called hidden
layers because their values are not observable in the training set. Hidden layers are the place
where the modeling of complex data happens. The more hidden layers a network has between
the input and output layer, the deeper it is. In general, any ANN with two or more hidden layers
is referred to as a deep neural network.

Figure 2.3: Structure of a simple feedforward neural network

DL-based architectures have successfully tackled a broad set of NLP tasks, e.g. sentence
classification, question answering and sentiment analysis [11][51]. Their ability to learn com-
plex features from data, instead of relying on engineered features, has been beneficial for NER
too.

A typical DL-based NER model consists of three main components: distributed represen-
tations that map each input word to a high dimensional vector, a context encoder to capture
the context dependencies between the words of a sentence and a tag decoder to predict the tags
for each word (Figure 2.4). These components can be implemented in various ways, so it’s
necessary to explore them one by one.

10 Named-entity Recognition

Figure 2.4: Building blocks of a typical DL-based NER model

Deep Learning-based Approaches 11

2.3.1 Input word representations
A fair share of the success of deep learning models on many NLP problems is due to word
embeddings. They are learned representations for text, such that words with similar meanings
have similar representations. Word embedding methods map a fixed size vocabulary of words
from a corpus into real-valued vector representations. The learning process can be either unsu-
pervised (using document statistics, word-word co-occurrences) or joint with a neural model on
a specific NLP task.

There are four types of word embeddings that are used in NER models: word-level, character-
level, contextualized and hybrid embeddings.

Word-level embeddings Generated from unsupervised learning algorithms, such as continu-
ous bag-of-words (CBOW) and continuous skip-gram models, over large collections of
text [32]. Their intuition is building global word embeddings, by listing the unique words
appearing in the documents and learning similar representations for words that share sim-
ilar characteristics. For example, GloVe word embeddings encode semantic information
by exploiting the ratios of word-word co-occurrence probabilities in a given corpus [34].
Another type of embeddings, FastText, encode morphology, by taking subword informa-
tion into account [7]. These embeddings are usually pre-trained and available for free,
under a permissive license.

Character-level embeddings They learn representations specific to the relevant task and do-
main, instead of hand-crafted prefix and suffix information about words. They are used
to capture orthographic sensitivity [25]. While some compositional relationships exist,
e.g. morphological processes such as adding -lich to a stem have relatively regular effects
(end-endlich), many words with lexical similarities have different meanings, such as, the
word pairs Welt-Zelt. They have been found to be useful for handling rare words and
spelling errors which are usually OOV1 for word embedding models. Sequence labeling
tasks like part-of-speech tagging or entity recognition can benefit from them [27][25].

Contextual embeddings The most recent type of embeddings, which have shown to be effec-
tive for NER [2]. Unlike word-level embeddings, they are generated from methods that
learn sequence-level semantics by considering all the words in a sentence or document.
That means that the same word will have different representations, based on its contextual
use. A more detailed description of the methods is given in the next section.

Hybrid embeddings Combinations of different embeddings and word features. In order to im-
prove the performance of their models, some studies incorporate additional information
(e.g. part-of-speech tags, gazetteers, capitalization features) into the final representation
of words [28]. Although this method might lead to higher scores for DL-based models
on a particular domain, it might hurt their generality, as they rely on additional word
features. Another strategy is concatenating different types of embeddings (stacked em-
beddings). The selection of embeddings varies depending on the task; they have shown
to complement one another [2].

1Out-of-vocabulary words, words that are not part of the training text data

12 Named-entity Recognition

2.3.2 Context Encoders
Words surrounding a word or a passage can throw light on its meaning. Given these sentences,
"Ich fahre nach Washington" and "George Washington war der erste Präsident der Vereinigten
Staaten von Amerika.", one can easily identify Washington as a location in the first sentence
and as a person in the second, based on the surrounding words. In sequence labeling tasks such
as NER, contextual information can be used to enhance the models and make better-informed
tagging decisions [25]. To extract and encode context, a sequence of words needs to be pro-
cessed. Typically, recurrent neural networks and transformers are used to deal with sequences
and learn long-term dependencies.

Recurrent Neural Network

Figure 2.5: An unrolled RNN model

Unlike deep feedforward neural networks, where the output of a layer is fed as input to the
next layer, recurrent neural networks (RNNs) include a feedback loop (see Figure 2.5). At time
step t, they take the input vector xt ∈ Rn and the hidden state vector ht−1 ∈ Rm to produce the
next hidden state ht in the following way:

ht = σ(Wxt + Uht−1 + b)

where W ∈ Rm×n, U ∈ Rm×m, b ∈ Rn are parameters of an affine transformation and σ is
a non-linear transformation function. The network will encode xt to yt, which will contain
evidence from the past input, carried over the hidden states.

This architecture has the advantage of processing input of any length without increasing
the model size. This makes RNNs suitable for natural language processing where the input is
sequential. In practice, however, vanilla RNNs fail to learn long-distance dependencies, due to
the vanishing/exploding gradients [3].

Long Short-Term Memory Network

It is a special variant of Recurrent Neural Networks, capable of learning long-distance depen-
dencies [21]. LSTMs are able to remember information for long periods of time unlike simple
RNNs, as they overcome the problems of vanishing and exploding gradients present in the tra-
ditional RNNs. They can process sequence of data as well as single data points. Therefore, they
are suitable for processing images, text, speech or videos.

Deep Learning-based Approaches 13

A typical LSTM unit has a cell, an input gate, an output gate and a forget gate. The cell is
the unit where the information is stored and the gates control the flow of information into and
outside the cell [21]. The long-term dependencies are stored within the cell and are referred to
as the cell state. The input, forget and output gates regulate the amount of information that flows
into the cell, the amount of information that remains in the cell and the amount of information
that is used to compute the activation of the LSTM unit, respectively. They consist of a sigmoid
neural net layer and an element-wise multiplication operation. The sigmoid layer outputs values
between 0 and 1, describing the amount of information that should go through. A value of 0
means no information should go through while 1 means all the information must go through.

They are used for tasks like classifying, processing and making predictions based on time
series data.

Colah’s Blog2 explains how LSTMs work in a simplified way. I give a brief description of
the steps, illustrated with pictures taken from his blog.

Firstly, LSTM decides what information to forget from the cell state Ct−1. This decision is
made by the forget gate layer, which looks at current input xt and previous hidden state vector
ht−1 and outputs a number between 0 and 1 for each number in the cell state Ct−1, using a
sigmoid function. 0 means that the number will be completely forgotten and 1 means that it
will be completely remembered. (Figure 2.6a)

ft = σ(Wf [ht−1, xt] + bf)

The next step is to decide what new information will be stored in the cell state Ct. This
consists of two steps. First, the sigmoid function of the input gate decides which values will be
updated. Next, a tanh layer creates a vector of new candidate values, C̃t, that could be added to
the state. (Figure 2.6b)

it = σ(Wi[ht−1, xt] + bi)

C̃t = tanh(WC [ht−1, xt] + bC)

In the next step, the cell state is updated, by combining the old one Ct−1 with the new one C̃t.
By multiplying the old state by ft, LSTM forgets things that need to be forgotten. Then itC̃t
is added. This represents the new candidate values, scaled by how much each state value is
updated. (Figure 2.6c)

Ct = ft � Ct−1 + it � C̃t
where � denotes element-wise multiplication.

Finally, the output will be based on the cell state Ct, but will be a filtered version. First,
the sigmoid function of the input gate decides what parts of the cell state will serve as output.
Then, the cell state goes through a tanh layer (so that the values are between −1 and 1) and it is
multiplied by the output of the sigmoid gate, to output the desired parts only. (Figure 2.6d)

ot = σ(Wo[ht−1, xt] + bo)

ht = ot � tanh(Ct)

2Christopher Olah, Understanding LSTM Networks, https://colah.github.io/posts/2015-08-Understanding-
LSTMs/

14 Named-entity Recognition

Figure 2.6: How an LSTM unit works, explained in 4 steps. a) Forget gate layer decides what
information to forget from the old cell state. b) Input gate layer decides the new information
that will be stored in the cell state. c) Cell state is updated. d) Output gate layer decides what to
output. Images are taken from Colah’s blog.

Bidirectional LSTM Network

LSTMs only preserve information of the past because inputs from the past are what they see.
However, in sequence labeling tasks, both past and future inputs for a given time are known.
In order to capture information from both directions, bidirectional LSTMs (BiLSTMs) were
introduced [18]. Their effectiveness for numerous NLP tasks, NER included, has been proven
by previous work [12].

In BiLSTMs, input will be processed in two directions, from left to right and the other way
around. The additional backward LSTM preserves information from the future and by combin-
ing the hidden states from both LSTMs, information from both past and future in any point in
time can be preserved. The structure of a typical BiLSTM layer with 3 units is given in Figure
2.7.

Suppose the next word in a sentence is to be predicted. This is what a unidirectional LSTM
will see on a high level: Er spricht ...

It will try to predict the next word only by taking this context into consideration. On the
other side, a BiLSTM has access to the future inputs, so it will be able to see further information
for example:

Forward LSTM: Er spricht ...
Backward LSTM: ... , weil er in Frankreich wohnt.
Using the information from the future makes it easier for the model to guess that the most

probable next word is "Französisch".

Language Models

Neural networks can be used for language modeling, that is, estimating the probability distri-
bution over sequences of words in order to predict the next word in a sequence. Their internal
hidden layers extract features from the raw data and build internal representations for each word
in the input sequence. The same word is mapped to different vector representations, depend-
ing on its position and the context it is used in the sentence. Such language-model-augmented
knowledge has enhanced the quality of embeddings and empirically improved the performance
of sequence labeling tasks, including NER [11][8][2].

Recent language models based on RNNs model languages as distributions over sequences
of characters, instead of words [24]. They are called character-level language models. This
approach has been successful at modeling languages with rich morphology (Arabic, German,

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Deep Learning-based Approaches 15

Figure 2.7: Bi-LSTM

Czech, Russian) [24]. Akbik et al. [2] followed a similar approach, using a BiLSTM network
as a language modeling architecture, which takes as input a sequence of characters and predicts
the next character. The hidden states of a bidirectional recurrent neural network are utilized to
create contextualized word embeddings. Alongside with the forward language model, a back-
ward model works in the same way, from right to left. The former model produces hidden state
representations that encode semantic-syntactic information of the sentence up to the word’s last
character, including the word itself. Similarly the latter model produces hidden state representa-
tions that encode semantic-syntactic information from the end of the sentence to the word’s first
character. Both these vectors are concatenated to create the final embedding, which captures
the semantic-syntactic information of the word and its surrounding text.

This approach handles rare and misspelled words better and models subword information
as well.

Transformers

RNNs deal with sequential input by processing one word at a time. Recent architectures, trans-
formers can parallelize the input, by processing the whole sequence simultaneously. They make
better use of GPUs, designed for parallel computation, and accelerate the training process.
Transformers have improved on the results for many common NLP tasks, including translation
and constituency parsing [47]. Figure 2.8 illustrates the structure of a transformer, followed by
a high-level description of how it works.

A transformer receives a sequence of words as input, each mapped to its embedding. The
same word in different sentences might have different meanings. Transformers use a positional
encoder to produce a vector that gives context based on the position of a word in the sentence.
Combining both vectors results in another vector with positional information, which is passed
into the encoder block. Firstly, the sequence goes through an self-attention layer that captures
the contextual relationships between words in a sentence. For each word, the layer generates an
attention vector, whose values indicate how relevant is the word w.r.t every other word in the
sequence. Attention vectors are passed on to a feedforward network layer and transformed into

16 Named-entity Recognition

Figure 2.8: Transformer architecture

Deep Learning-based Approaches 17

a form that is digestible by the next processing block.
During the training phase, the output sequence is fed to the decoder block, in a similar way

as the input sequence is fed to the encoder. Again, the sequence goes through a self-attention
layer and the resulting attention vectors are combined with the vectors from the encoder, to
be processed by another attention block, called encoder-decoder attention layer. Here is where
the mapping between both input and output sequences happens. The resulting vectors are then
passed to a feedforward network layer layer, which makes the output vector more digestible for
the next linear layer with as many hidden units as the length of output sequence. A softmax
layer transforms its output into a probability distribution, based on which the next element of
the sequence is predicted.

Two popular transformer architectures are:

BERT "Bidirectional Encoder Representations from Transformers" is a transformer-based lan-
guage model, developed by Google [11]. It corrupts input sentences by replacing some
tokens with a [MASK] symbol. This is known as the masked language modeling (MLM)
strategy. The model is then trained to reconstruct the original token. However, this
method of training is somewhat restricted in that the model only learns from the masked
out tokens which typically make up about 15% of the input tokens. BERT pre-trains deep
bidirectional representations from unlabeled text by jointly conditioning on both left and
right context in all layers. Its word representations are continuously informed by the
words around them. BERT model uses several layers of transformer encoders and each
layer produces an output for each word, which can be used as a word embedding. By
feeding these embeddings as input features to a sequence tagger and observing the result-
ing F-scores, the BERT authors showed that concatenated embeddings from several layers
yield better results. Regarding the combination strategy, the best performing choices for
the task of NER are summing or concatenating the last 4 layers.

ELECTRA "Efficiently Learning an Encoder that Classifies Token Replacements Accurately"
is another modern transformer-based language model that is trained to build representa-
tions that take into account the context around a specific word. Instead of masking out
tokens like BERT, a portion of the input tokens are substituted by a synthetically gener-
ated token [9]. The model is then trained to classify whether each input token is original
or substituted, thus allowing for gradient updates at every input position. This is achieved
by two components that are trained jointly: a discriminator that detects the replaced to-
kens and a generator that provides plausible token substitutes.

2.3.3 Tag Decoders
Tag decoder is the final component of an NER model. It predicts tags for tokens in the input
sentence. It receives the output of the context encoder and computes a distribution score for all
possible tags for the words in the network input. Based on the distribution scores, it outputs a
tag for each word in the input sentence.

Softmax

The entity recognition task is treated as a multi-class classification problem, when a softmax
layer is used as a tag decoder. Tags are independently predicted based on the context-dependent

18 Named-entity Recognition

representations, produced by the encoder, without taking into account its neighboring words.
Softmax layer must have the same number of nodes as the number of tags. It takes as input the
context-dependent representation for each word from the previous layer and assigns decimal
probabilities of the current word having a particular tag, which must add up to 1.0. Softmax is
defined as:

Softmax(xi) =
exp(xi)∑

j xj

where x is the matrix of scores output by the BiLSTM network, with each row corresponding
to a word in the input sequence. xi is the current row, for which probabilities for each tag will
be computed.

Conditional Random Field

Making independent tagging decisions for each output is limiting when there are strong depen-
dencies across output labels. In NER, there are several hard constraints (e.g. I-PER cannot
follow B-LOC) that cannot be modeled with independence assumptions. Conditional random
fields jointly decode a chain of labels, ensuring the resulting label sequence to be meaningful.
CRFs have been included in most state-of-the art models in NER, to avoid the generation of
illegal annotations. Generally, they are built upon the encoder layer.

Suppose x =< x1, x2, ..., xn > is an input sequence where xi is the vector for the ith word.
C denotes the matrix of scores output by the BiLSTM layer below. C has a size of n×k, where
k is the number of distinct tags, and Ci,j corresponds to the score outputted by the network for
the ith word and the jth tag. For a sequence of predictions, the score of a sequence of tags
y =< y1, y2, ..., yn > is defined as:

s(x, y) =
n∑
i=0

Ayi,yi+1
+

n∑
i=1

Ci,yi

whereA is a tag-transition matrix such thatAi,j represents the score jumping from tag i to tag j.

The score is normalized over all possible tag sequences using a softmax, yielding a probability
for the sequence y:

p(y|x) = exp(s(x, y))∑
ỹ∈Ys exp(s(x, ỹ))

During training, the log-probability of the correct tag sequence is maximized:

log(p(y|x)) = s(x, y)− log(
∑
ỹ∈Yx

exp(s(x, ỹ)))

where Yx is the set of all possible tag sequences for the input sequence x. While decoding, the
output sequence that obtains the maximum score given by:

y∗ = argmax
ỹ∈Yx

s(x, ỹ)

is chosen. At inference time, the last two equations can be computed using Viterbi algorithm.

Evaluation 19

2.4 Evaluation
There are two types of evaluation methods: the token-level method and the entity-level method.
As the task name “Named-Entity” suggests, it is important to know how a model predicts the
whole entity, instead of separate tokens. Therefore, entity-level method is the popular evaluation
approach for NER models. It includes two steps: boundary detection and type identification.
An instance is correctly recognized when the system correctly identifies its boundaries and type.

Numerically, the performance of such systems is measured by precision, recall and F-score.
They are computed using the numbers of False Positives (FP), False Negatives (FN) and True
Positives (TP).

• False Positive (FP): An entity found by the NER system that doesn’t exist in the ground
truth.

• False Negative (FN): An entity not found by the NER system that exists in the ground
truth.

• True positive (TP): An entity found by the NER system that also exists in the ground
truth.

Precision takes into account only the number of correctly assigned labels (true positives).

Precision =
TP

(TP + FP)

Recall, in addition to true positives, also takes into account the true tags that were missed, and
therefore replaced with wrongly labeled ones.

Recall =
TP

(TP + FN)

F-score is a combination of precision and recall. Usually the traditional F-score, the harmonic
mean of precision and recall, is used to measure the performance of NER systems. This score
is very often referred to as F1-score too and it is commonly reported in percentage points (0-
100%).

Fscore =
2 · (Precision ·Recall)
(Precision+Recall)

Let’s consider the example illustrated in Figure 2.9. “Schartau” is counted as a TP because
the true and predicted labels match. The model has failed to correctly identify "Tagesspiel".
Instead of ORG, the system has labeled it as MISC. The entity is counted as two errors, a FN
for ORG and a FP for MISC. When the model makes the boundary error, it is counted as two
errors too. "Adam Fischer" hasn’t been entirely identified as a person, so it is counted as a
FN for PER. On the other side, "Adam" detected by the model as a person, is not part of the
true entities, so it will be counted as a FP for PER. In total, there are 1 TP, 2 FPs and 2 FNs.
These values are used to measure precision, recall and F score, based on the above mentioned
formulas:

Precision =
1

(1 + 2)
= 0.333

20 Named-entity Recognition

Figure 2.9: Example of a NER prediction

Recall =
1

(1 + 2)
= 0.333

Fscore =
2 · (0.333 · 0.333)
(0.333 + 0.333)

= 0.333 = 33.3%

2.5 German NER

2.5.1 German NER datasets
There are two main German datasets for the NER task. They are commonly referred to by the
name of the task they have been designed for, namely CoNLL-03 and GermEval. The research
community has been using them to investigate new NER approaches or improve the state-of-
the-art.

CoNLL-03

The CoNLL-2003 shared task3 data files consist of four columns separated by a space character.
Each line contains a word and its three characteristics given as tags, namely a part-of-speech
(POS) tag, a syntactic chunk tag and the named entity tag. Each sentence is followed by an
empty line.

Sentences in the dataset are represented using the IOB14 tagging scheme (Inside, Outside
and Beginning). Words tagged with O are outside of named entities and the I-XXX tag is
used for words inside a named entity of type XXX. Whenever two entities of type XXX are
immediately next to each other, the first word of the second entity will be tagged B-XXX in
order to show that it starts another entity.

The sentences contain entities of four types: person (PER), organization (ORG), location
(LOC) and miscellaneous (MISC) names that do not belong to any of the previous three types.

3https://www.clips.uantwerpen.be/conll2003/ner/
4There are two IOB tagging scheme types: IOB1 and IOB2. The difference is how they deal with how two

adjacent named entities of the same type are labeled. In IOB2, all entities begin with B-. In IOB1, B- is only used
to separate two adjacent entities of the same type.

German NER 21

The entities are assumed to be non-recursive and non-overlapping. When an entity is embedded
in another one, usually only the top level entity has been annotated.

The CoNLL-2003 data for German is a collection of articles from the Frankfurter Rund-
schau, written in one week at the end of August 1992. People of the University of Antwerp
have annotated the dataset.

GermEval

It is the largest publicly available dataset for German NER. It consists of 31,000 manually
annotated sentences (over 591,000 tokens), sampled sentence-wise from German Wikipedia
and German online news, using corpora from Leipzig Corpora Collection [39] as a basis.

The data files consist of sentences, extracted from different articles. Each sentence starts
with a line containing the source link and the date of the article. Each word is put on a separate
line and there is an empty line after each sentence. Words are followed by two annotations:
outer and inner span named entities. For example, the term Bayern München is tagged as
organization in the outer span annotation. However, the terms are annotated as location in the
inner span annotation. In addition to the standard tags used in the CoNLL-03 dataset, more
detailed versions of these entities were formed by adding suffixes: -deriv to mark the derivation
of named entities (e.g. die deutsche Flugsicherung - deutsche is a derived location) and -part to
mark compounds including an entity (e.g. in Karlsgymnasium - the part ‘Karl’ is a person). To
be consistent with the tagsets of the CoNLL-03 task, the detailed entity types are removed for
the NER task. However, these types can not be ignored for semantic tasks, such as identifying
locations in articles.

The dataset was annotated by native German speakers, unlike the CoNLL-03 German dataset,
making it more consistent. It follows the IOB2 annotation scheme. Another advantage of this
dataset is that it is easy to obtain and use with no licensing issues of previous datasets5.

2.5.2 Related work in German NER
There is already a number of empirical studies that investigate the performance of NER taggers
on German texts. Since 2005, Stanford NER has provided CRF-based NER models for multiple
languages, German included. Besides language-independent features, including character n-
grams, words, word shapes, POS and lemmas, they have complemented the German model
with distributional clusters, computed on a large German corpus [15]. The distributed model
for German is pre-trained on the German CoNLL-03 Shared-Task data.

Another CRF-based NER system was developed later by Benikova et al. [5]. This model
is optimized for the GermEval14 NER challenge and uses similar features to Stanford NER’s.
GermaNER is supplemented by some specific information sources, such as distributional se-
mantics and topic cluster information, gazetteer lists.

Over the past few years, neural architectures for NER that use no language-specific features
resources or features have been developed. They can be easily adopted to any language, as
long as there is supervised training data available for that language. The German dataset of
CoNLL-03 Shared-Task has been used to evaluate the performance of several NER models for
German.

5https://sites.google.com/site/germeval2014ner/data

22 Named-entity Recognition

Lample et al. [25] proposed a a bidirectional LSTM with a sequential conditional random
layer above it (LSTM-CRF), that combined skip-n-gram embeddings with character-based word
representations generated from a Bi-LSTM model taking a sequence of characters as input.
Experiments in German showed that BiLSTM-CRF was able to obtain state-of-the-art NER
performance without any hand-engineered features or gazetteers.

Another LSTM-based model was proposed later by Gillick et al. [17]. Byte-to-Span (BTS)
read text as bytes and outputs span annotations of the form [start, length, label] where start
positions, lengths, and labels were separate entries in the vocabulary. Due to the small vocabu-
lary size, BTS models were very compact, but produced results similar to the state-of-the-art in
POS-tagging and NER for German.

In 2018, Yadav et al. [49] extended Lample’s NER approach with a learned representation
of the n-gram prefixes and suffixes of each word. Results showed that sub-word features such
as prefixes and suffixes are complementary to character and word-level information, slightly
improving the state-of-the-art performance for German.

Riedl & Pano [40] came to the conclusion that Bi-LSTMs profit substantially from transfer
learning, which enables them to be trained on multiple corpora, resulting in a new state-of-
the art model for German NER. They pitted linear chain CRFs against BiLSTMs, to observe
the trade-off between expressiveness and data requirements and found out that neural networks
outperform CRFs, when enough data is available.

In the span of little more than 3 years, transfer learning in the form of pretrained language
models has become ubiquitous in NLP and has contributed to the state-of-the-art on a wide
range of tasks, including NER. The general practice is to pretrain representations on a large
unlabeled text corpus using a method of choice and then to adapt these representations to a
supervised target task using labeled data.

Devlin et al. [11] released mBERT (Multilingual BERT), pre-trained on the concatenation
of monolingual Wikipedia corpora from 104 languages, including German. Akbik et al. [2]
introduced the contextualized string embeddings and outperformed previous work on German
NER, reporting new state-of-the-art scores on both the CoNLL-03 Shared Task and GermEval
challenge data.

Schweter and Baiter [41] investigated the influence of using pre-trained language models
for named entity recognition for "low-resource" historical german datasets. Their work showed
that this approach was more effective than using transfer-learning (Riedl & Pado).

The most recent contribution in German-specific language models has been made by Chan
et al. [8]. They used a range of different German language corpora such as OSCAR (Com-
mon Crawl), OPUS (movie subtitles, parliament speeches, books), Wikipedia, OpenLegalData
(German Court Decisions) for pre-training BERT and ELECTRA models. By benchmarking
against existing German models for several NLP tasks, these models have proved to be the best
German models to date.

German NER 23

Table 2.1: Performance scores reported by each paper for the NER task in German.

Paper/Dataset CoNLL-03 GermEval

Stanford NER 78.20 -
GermaNER 79.37 76.52
Lample et al. 78.76 -
Gillick et al. 76.22 -
Yadav et al. 79.01 -
Riedl & Pano 82.93 84.73
Akbik et al. 88.32 84.65
Chan et al. - 88.95

Chapter 3
Comparative evaluation of embeddings for
German NER

One of the variables of interest is the type of embeddings. Some embeddings might be more
useful than others for German NER. This chapter describes the process of conducting a com-
parative evaluation, in order to analyze how different embeddings compare to each other for the
two biggest NER datasets in German, CoNLL-03 and GermEval. Embeddings are selected in
such a way, that every category described earlier in Chapter 2 is represented by at least one of
them. They are fed as input to a popular DL-based sequence labeling architecture. Weaknesses
of each embedding type are exposed through a detailed analysis of their performance w.r.t a set
of dataset attributes.

3.1 Chosen architecture for evaluation

Out of all the deep learning sequence labeling architectures proposed for NER, bidirectional
LSTM networks with a CRF layer on top of it have achieved state-of-the-art performance (Ma
and Hovy [28], Lample et al. [25]).

Words in an input sequence are mapped to embeddings and are sequentially processed by
a BiLSTM network. Both forward and backward LSTM units compute representations of the
left and right context of the sentence at every word. Both vectors are concatenated into a final
context-dependent embedding. The CRF layer ensures that the predicted labels are legal, by
jointly modeling the probability from the Bi-LSTM layer and the transition probability between
adjacent tags. Tag transition probabilities can be learned through the CRF layer during the
training process.

The architecture will be referred to as the BiLSTM-CRF module.

3.2 Evaluation

In order to evaluate the models, the conlleval script from CoNLL-03 Shared-Task is used. It
computes the precision, recall and F-score for each entity type and combined. The combined
scores are reported and compared to find the best performing models.

Evaluation 25

On the other side, holistic metrics like F-score do not provide insight into how particular
models perform differently and how diverse datasets impact the model design choices. Fu et al.
[16] introduced a fine grained evaluation methodology for NER that interprets the differences
in models and datasets by exposing the strengths and weaknesses of models. This evaluation
approach leverages the notion of “attributes” defined over tokens/entities1 of a dataset. The
attributes can be classified as local or aggregate.

Local attributes characterize properties of a token or an entity, regarding the token/entity
itself or the sentence in which they appear. Local attributes used in this work are:

• Entity Length (eLen): The number of tokens an entity spans over.

• Sentence Length (sLen): The number of tokens in a sentence.

• Entity Density (eDen): How often an entity word appears in a sentence in relation to the
total number of tokens it contains.

Aggregate attributes characterize properties of entities or tokens based on aggregate statistics
that require computations over the whole training data. Aggregate attributes used in this work
are:

• Label Consistency of a Token (tCon): How consistently a particular token is labeled
with a particular label.

• Token Frequency (tFre): The number of times a token appears in a dataset over the total
number of tokens.

• Label consistency of an Entity (eCon): How consistently a particular entity is labeled
with a particular label.

• Entity Frequency (eFre): The number of times an entity appears in a dataset over the
total number of entities.

Test entities are partitioned into a set of buckets for each pre-defined attribute. Comparing the
F-scores among different buckets helps us interpret the differences in models and datasets, as
well as the relationship between them. Figure 3.1 illustrates the process in a simplified way.

Figure 3.1: An example of the evaluation methodology. eLen (entity length) is one of the
attributes of the entity "New York". Performance can be droken down over the defined attribute
values.

1A token is a single word, it can either be an entity, a part of an entity or not an entity at all. An entity can span
one or more words.

26 Comparative evaluation of embeddings for German NER

3.3 Datasets
CoNLL-03 and GermEval consist of 3 sets: a training set, a test set and a development set. The
training set contains the largest portion of the dataset and is used to train a neural network, the
development set can be used to finetune the parameters of network, while the test set is used to
evaluate the performance of a network after training. Table 3.1 shows the number of sentences
for the three sets for each dataset and Table 3.2 shows the number of entity instances for each
set on both datasets.

Table 3.1: Number of sentences for each set

Dataset Train Dev Test

CoNLL-03 12152 2867 3005
GermEval 24000 2200 5100

Table 3.2: Dataset statistics

CoNLL-03 GermEval
Entities Train Dev Test Train Dev Test

PERSON 4495 1990 1824 12170 1152 2551
ORGANIZATION 4242 2117 1262 9025 862 1848
LOCATION 5239 1340 1285 9450 907 2009
MISC 2807 1141 800 6531 589 1563

3.3.1 Dataset pre-processing

The datasets are brought to the same column-oriented format as CoNLL-03, where the first
column contains the tokens and the second one contains the NER tags. In CoNLL-03 dataset,
the POS-tags and syntactic chunks were removed, as they are redundant. In GermEval, the
inner span annotations were removed, in order to be consistent with the tagsets of CoNLL-03.
However, they can not be ignored for semantic tasks, such as identifying locations in articles.
The IOB2 annotation scheme is used for both datasets.

Building end-to-end systems is the goal, therefore no further dataset pre-processing is per-
formed.

3.4 Chosen embeddings
FastText embeddings They are generated from a pre-trained context-independent model, an

extension of the skip-gram model [7], which takes into account subword information.
The approach models morphology by considering character n-grams and each word is
represented as a bag of character n-grams. This is convenient for German, as it is a
morphologically rich language.

Experiment 27

Character-level embeddings They are not pre-trained, as they depend on the task. They get
randomly initialized at first, so they are not meaningful until trained on the specific NER
task. Stacking them with pre-trained embeddings, one can obtain higher-quality word
representations. They are generated following Lample’s approach [25]. A character-level
BiLSTM layer is applied to each word separately and the concatenated hidden output
states represent the embeddings.

Flair embeddings They are extracted from the internal states of a pre-trained character-level
language model [2]. Section 2.3.2 describes in detail how Flair embeddings are produced.

Transformer-based embeddings Transformers used in this work are multilingual BERT, GBERT
and GELECTRA. They are uploaded to the Hugging Face model hub2 as bert-base-
multilingual-cased, deepset/gbert-large, deepset/gelectra-large. The top four layers of
these transformers are exploited to create the contextualized embeddings for the NER
models.

The dimensions for each type of embeddings can be found in Table 3.3.

Table 3.3: Types of embeddings used and their dimensions

Embeddings Dimension

FastText 300
Character-level 50
Flair 8192
mBERT 3072
GBERT 4096
GELECTRA 4096

3.5 Experiment

3.5.1 Experimental setup
The chosen word embeddings are passed into a BiLSTM-CRF module, whose structure is
shown in Figure 3.2.

The model setups used for evaluation are as follows:

BASE : This is the simplest setup, as it relies only on pre-trained FastText embeddings. It is a
reimplementation of the LSTM-based model of Huang et al. [22].

BASE+CHAR : An extension of BASE, in which character-level embeddings are added to
FastText embeddings, after being computed by a BiLSTM layer for each word, they . It
is a reimplementation of Lample’s neural architecture for NER [25].

2https://huggingface.co/models

28 Comparative evaluation of embeddings for German NER

Figure 3.2: BiLSTM-CRF module

BASE+FLAIR : A similar extension, in which FastText embeddings are concatenated with
Flair embeddings.

BASE+mBERT : In this setting, embeddings extracted from multilingual BERT (mBERT) are
concatenated with FastText embeddings.

BASE+GBERT : A setup, in which embeddings extracted from GBERT and pre-trained Fast-
Text embeddings are concatenated and passed to the BiLSTM-CRF module.

BASE+GELECTRA : This model uses the contextualized embeddings from GELECTRA and
concatenates them with the pre-trained FastText embeddings.

The first two setups, BASE and BASE+CHAR, are shown in Figures 3.3 and 3.4, respectively.
The last four setups share the same structure, they simply use different language models to
produce their embeddings. Figure 3.5 illustrates the structure, labeled as BASE+LM , where
LM can be any of the four language models, mentioned above.

Figure 3.3: BASE

3.5.2 Model characteristics and training parameters
Language Models: Figure 3.6 below gives an overview of the language models being used
(mBERT, GBERT, GELECTRA and FLAIR) and their characteristics.

Experiment 29

Figure 3.4: BASE+CHAR

Figure 3.5: BASE+LM

Figure 3.6: Characteristics of mBERT, GBERT, GELECTRA and FLAIR language model.

30 Comparative evaluation of embeddings for German NER

BiLSTM-CRF module: I follow most hyper-parameter suggestions as given by the thor-
ough study from Reimers and Gurevych [38]. All model setups share a generic SGD forward
and backward training procedure.

I perform model selection over the learning rate lr ∈ {0.05, 0.1, 0.15} and batch size
∈ {16, 32, 48}, in order to obtain the values for which the model performs the best on the
validation set. A batch size of 32 sentences was the most effective choice for training and up-
dating parameters of the models. I employ a learning rate of 0.1 that is halved if training loss
does not decrease for 5 consecutive epochs. The gradient clipping is set to 5.

The number of hidden states for the BiLSTM layer is set to 512 and each of them is ran-
domly initialized with values drawn from the standard normal distribution. For theBASE+CHAR

setup, a BiLSTM layer with 25 hidden states is used to train the character-level embeddings.
Each model is trained for 150 epochs. The experiment is repeated three times and the best

F-score on the test set is reported as final performance.

3.5.3 Implementation, Training and Tagging Speed
The neural networks are implemented using the open-source Flair3 library, built directly on
PyTorch. It is the most convenient framework to use, as it is well-documented and provides the
necessary embeddings.

In a Quadro RTX 4000 processor, training time varies from 3 hours for BASE to 9 hours
for BASE+FLAIR, BASE+mBERT , BASE+GBERT and BASE+GELECTRA. BASE+FLAIR

takes the longest to train. The rest take a few hours less, approximately up to 5 hours. Tagging
the CoNLL-03 test set takes about 26 seconds, while for GermEval it takes around 49 seconds.

3.6 Results

3.6.1 Comparative evaluation
The experimental results are summarized in Table 3.4.

Table 3.4: Summary of evaluation results or all proposed setups.

CoNLL-03 GermEval
Model Precision Recall F-score Precision Recall F-score

BASE 78.35 71.45 74.74 85.02 76.75 80.68
BASE+CHAR 82.39 77.56 79.9 85.91 80.89 83.33
BASE+FLAIR 86.13 80.97 83.47 87.04 84.11 85.55
BASE+mBERT 86.01 80.78 83.32 89.28 85.98 87.6
BASE+GBERT 86.89 82.09 84.42 88.56 85.3 86.9
BASE+GELECTRA 86.24 81.66 83.89 90 87.54 88.75

Evaluating the same network architecture, while varying the embeddings for input makes
it easier to quantify their impact on the NER performance. Looking at the F-score column

3Flair, https://github.com/flairNLP/flair

Results 31

for both datasets, the scores improve as FastText embeddings (BASE) are complemented
with character-level embeddings (BASE+CHAR) or contextualized embeddings from FLAIR,
mBERT, GBERT or GELECTRA. The best performance is achieved when transformer-based
embeddings are concatenated with FastText. BASE+GBERT and BASE+GELECTRA are the
winning models on CoNLL-03 and GermEval, respectively. A common characteristic of GBERT
and GELECTRA is that they are both transformer-based language models, trained on a large
German corpora.

Detailed observations are listed:

1. Better performance on GermEval than CoNLL-03. The most striking observation is
that each model performs better when it is trained and tested on GermEval data, compared
to CoNLL-03. Better precision, recall and F-scores indicate more accurate entity extrac-
tions. According to Benikova et al. [4], GermEval is a higher quality dataset, as it has
been annotated by native speakers and the annotation process has gone through several
stages, in order to mitigate the consistency issues, present in CoNLL-03. Consistency,
as it will be shown later, can help systems make more accurate tagging decisions and
perform better at entity extraction.

2. Character-level embeddings make a difference in German NER. There is an increase
in the F-scores for both datasets, when switching from BASE to BASE+CHAR. Task-
trained character-level embeddings (BASE+CHAR) cause an improvement with 5.16 points
on CoNLL-03 and 2.16 points on GermEval data. As discussed earlier, they are useful
for handling out-of-vocabulary words. German is a morphologically rich language, with
many rare compound words. The task-trained embeddings encode information specific to
the task and domain. This impacts the performance scores on both datasets.

3. Transformer-based embeddings achieve the best performance. Drawing conclusions
from the comparison of Flair, mBERT, GBERT and GELECTRA is not trivial because
they differ in dimensions, language modeling strategy and pretraining data. Flair under-
performs GBERT and GELECTRA on both datasets. Compared to multilingual BERT,
Flair performs slightly better on CoNLL-03, but worse on GermEval. This might indi-
cate that character-level contextualization is less useful than word-level contextualization
for German. Regarding transformers only, BASE+GBERT is the winner on CoNLL-03
dataset (84.42) and BASE+GELECTRA on GermEval (88.75). Both of the models are
regarded as "the best German models up to date" [8] and the claim is supported by the
comparative evaluation results in this work.

3.6.2 Fine-grained evaluation
In order to further explain the results from Table 3.4, the fine-grained approach described earlier
is used. The code, provided on Github4 from the authors of the approach, does not support
German datasets, so it is extended for German CoNLL-03 and GermEval, according to the
method described in their paper [16]. Two types of analysis were performed: model-wise and
bucket-wise.

4https://github.com/neulab/InterpretEval

32 Comparative evaluation of embeddings for German NER

Model-wise analysis

Model-wise analysis is used to gain insights into how different dataset attributes affect the per-
formance of models with different embedding configurations.

Approach – The test data from each dataset, CoNLL-03 and GermEval, is split into 4 buck-
ets for each of the specified data attributes. The bucketing interval strategy with respect to each
attribute is described in the Appendix.

Statistical variables Sσmodel,attrib. and Sρmodel,attrib. are used to draw correlations between an
attribute and a model’s performance.

• Sρmodel,attrib. calculates the Spearman’s rank correlation coefficient for a specific model,
using the ranked F-scores of buckets for an attribute. It characterizes the strength of the
relationship between the values of an attribute (buckets) and a model’s performance.

• Sσmodel,attrib. calculates the standard deviation among the F-scores achieved by a model in
each bucket of an attribute. Intuitively, it characterizes the degree to which an attribute
impacts the performance of a model.

For example, SρBASE+FLAIR,eLen
= −0.9 indicates that the performance of the model using

Flair embeddings is negatively and highly correlated with the values of eLen, that is, the per-
formance degrades as it deals with longer entities. Furthermore, SσBASE+FLAIR,eLen

indicates the
degree to which entity length influences the performance.

Table 3.5 illustrates the averages of Sσmodel,attrib. and Sρmodel,attrib. on both CoNLL-03 and
GermEval datasets. The most significant measures have been colored and their interpretations
lead to the following observations:

Table 3.5: Model-wise measures, Spearman coefficient and standard deviation.

Spearman (Sρ) Standard deviation (Sσ)
Model eCon tCon eFre tFre eLen sLen eDen eCon tCon eFre tFre eLen sLen eDen

BASE 0.9 1 0.9 -0.2 -0.9 -0.1 0 0.0997 0.1233 0.0842 0.0703 0.1449 0.0257 0.0341
BASE+CHAR 0.9 0.9 0.9 -0.2 -0.9 -0.2 0 0.0883 0.1073 0.0660 0.0651 0.1526 0.0207 0.0285
BASE+FLAIR 0.9 0.9 0.9 -0.2 -0.9 -0.2 0 0.0770 0.0935 0.0535 0.0501 0.1402 0.0156 0.0263
BASE+mBERT 0.8 1 1 -0.3 -0.8 -0.2 0.2 0.0675 0.0812 0.0457 0.0372 0.1204 0.0094 0.0200
BASE+GBERT 0.8 1 1 -0.2 -0.8 0 0.3 0.0711 0.0805 0.0433 0.0415 0.1176 0.0169 0.0191
BASE+GELECTRA 0.8 1 1 -0.3 -0.9 -0.5 -0.3 0.0704 0.0808 0.0361 0.0314 0.1006 0.0147 0.0206

1. Entity length is negatively and strongly correlated with models’ performances. -
High negative values of Sρ for eLen suggest that the performances are sensitive to en-
tity length. Models are less likely to detect entities that span over multiple tokens. The
standard deviation values for models with transformer-based (mBERT, GBERT, GELEC-
TRA) word embeddings are the lowest, compared to models using Flair embeddings or
non-contextualized embeddings, making them the most robust models of the set. This
might come as a result of the attention layers transformer-based LMs use, which give
them the capability to model longer spans of entities better. BASE+GELECTRA has the
smallest standard deviation for eLen, which makes it the most robust, when dealing with
long entities.

Results 33

2. Label consistency is positively and highly correlated with the performance of NER
models. - High values of Sρ for eCon and tCon indicate that models are generally sen-
sitive to the consistency of annotations. To make the difference between the models, Sσ

values among models are compared. BASE has the highest standard deviation, sug-
gesting that FastText embeddings alone are not informative enough to deal with type
ambiguities that result in the same entity appearing multiple times in the dataset but be-
ing tagged differently. BASE+mBERT , BASE+GERT and BASE+GELECTRA have the
smallest standard deviations, indicating that they generalize better to entities with low
label consistencies. This can be attributed to the ability of their embeddings to model
polysemy, by taking the context around the word into account. They are more useful for
generalization than traditional static embeddings like FastText or character-level embed-
dings, where a word is mapped to a single representation, regardless of its context.

Bucket-wise analysis

Approach – Given a model and an evaluation attribute, the buckets containing the test samples
that have achieved the highest and lowest performance are selected. The difference in F-scores
suggests under which conditions a model performs well or not. Table A.1 illustrates the bucket-
wise evaluation for BASE+GELECTRA on both datasets, in the form of column charts. Each
column represents an attribute, whose label is given above. The labels along x-axis represent
the bucket number of the attribute, on which the model has achieved its worst and best perfor-
mance, respectively. The dark green bin shows the absolute difference between the buckets. For
example, considering BASE+GELECTRA on CoNLL-03, the bucket with the lowest F-score for
entity consistency (eCon) is bucket number 1 and the one with the highest F-score is bucket
number 3. The difference between the two scores (20.73) is shown through the length of the
bin. Other models follow similar patterns and are included in the appendix.

Observations – Large gaps in performance are observed generally for entity length, where
the lowest performance is obtained on the last bucket with entities spanning 4 or more to-
kens (eLen: bucket 3). Significant differences can be observed for attributes related to label
consistency (eCon, tCon) too. All models score the highest in the last bucket of entity/token
consistency (eCon, tCon: bucket 3), which contains the most consistently-labeled entities. On
the other hand, the worst performance was obtained in the first two buckets with low consis-
tency (eCon, tCon: buckets 0 and 1). Results show that even though models with contextualized
embeddings like BASE+FLAIR, BASE+mBERT , BASE+GBERT and BASE+GELECTRA are
better at dealing with lengthy entities, they still suffer from a considerable drop in performance.

3.6.3 Contributing in German NER
The results of the comparative evaluation can be used to "fill the gaps" in the German NER
research. Most types of embeddings are not evaluated on both datasets. Table 3.7 shows a
summary of evaluation results of all proposed setups and the best published scores for each
of them on CoNLL-03 and GermEval. For the setups that have been evaluated before, the
difference between performance scores is given in parenthesis.

34 Comparative evaluation of embeddings for German NER

Table 3.6: Bucket-wise analysis for each model. Numbers from 0 to 3 represent the four buck-
ets, from the smallest to the largest attribute values. The "number/number" pairs in the horizon-
tal axis represent the buckets of a specific attribute on which a model achieved its worst and
best performance, respectively. Green bins represent the difference between the best and worst
performance.

CoNLL-03 GermEval

Model

eC
on

tC
on

eF
re

tF
re

eL
en

sL
en

eD
en

eC
on

tC
on

eF
re

tF
re

eL
en

sL
en

eD
en

BASE+GELECTRA 1/3 0/3 0/3 3/2 3/1 3/2 2/3
0

10

20

30

40

50

F1
sc

or
es

1/3 0/3 0/3 3/1 3/0 2/0 3/0
0

10

20

30

40

50

F1
sc

or
es

Table 3.7: Summary of evaluation results and the best published scores of all proposed setups
on CoNLL-03 and GermEval.

CoNLL-03 GermEval
Model Published score Our score Published score Our score

BASE - 74.74 - 80.68
BASE+CHAR 78.76 79.9 (↑ 1.14) - 83.33
BASE+FLAIR 88.32 83.47 (↓ 4.85) 84.65 85.55 (↑ 0.9)
BASE+mBERT - 83.32 - 87.6
BASE+GBERT - 84.42 88.16 86.9 (↓ 1.26)
BASE+GELECTRA - 83.39 88.95 88.75 (↓ 0.2)

Results 35

Authors of model setups BASE [22] and BASE+mBERT [35] have not published scores
for German NER on any of the datasets. Authors of BASE+GBERT and BASE+GELECTRA [8]
have reported scores on GermEval dataset only, while BASE+CHAR [25] has been evaluated
only on CoNLL-2003.

In the case of Flair embeddings on CoNLL-03, there is a big difference between the pub-
lished and obtained score. This issue has been reported by other researchers, who have tried to
reproduce the results for this setup 5. This is caused by using different versions of the dataset.
Authors of Flair use the revised version of this dataset (2006), whose statistics are different
from the older version, used in this work (2003). Unable to obtain the revised dataset, this work
reports the scores on the 2003 version.

5https://github.com/flairNLP/flair/issues/1102

Chapter 4
NER performance across other domain
settings

The models that were trained on CoNLL-03 and GermEval in Chapter 3, can now be used to
investigate other aspects of NER. In this chapter, I aim to improve the performance of NER
models on a scarce-data domain and exploit the multilingual embeddings from pre-trained mul-
tilingual BERT to build a single model that extract entities in several languages.

4.1 Finetuning for a "small-data" scenario
A drawback of neural networks is that they are "data-hungry". They require a lot of training
data, in order to properly adjust their weights and generalize well. In NER, the process of
annotating a dataset requires a lot of time and efforts. As a result, the number of available
datasets for NER is very limited. There are domains for which there is little to no available
training data. The state-of-the-art models do not perform well on such domains, as they have
not been covered by the data they have been trained on.

However, their knowledge on a domain might be transferred to the new domain with scarce
data. In this experiment, I resume the training process of the existing models on a small dataset
like Europarl. This technique is also known as finetuning and has been previously used by Riedl
& Pado [40] to improve the NER results on historical German data. In their work, they used
pre-trained FastText embeddings. Here, contextualized embeddings extracted from pre-trained
language models are considered as well.

CoNLL-03 and GermEval data are considered as source domains, as they are big datasets.

Table 4.1: Europarl statistics

Train Test

PERSON 410 105
LOCATION 543 181
ORGANIZATION 730 144
MISC 662 304
Number of sentences 3538 857

Finetuning for a "small-data" scenario 37

The target domain, represented by Europarl, consists of parliament sessions and discussions
in German. Statistics for this dataset can be found in Table 4.1. Since both source and target
domains have the same label set (PER, ORG, LOC, MISC), all the pre-trained model parameters
and layers are shared during the process of finetuning on the new data for another few epochs.

4.1.1 Experimental setup
The pre-trained models used for finetuning on Europarl are the setups from the first experiment,
namely:

• BASE

• BASE+CHAR

• BASE+FLAIR

• BASE+mBERT

• BASE+GBERT

• BASE+GELECTRA

Since each of them has been trained on 2 datasets, CoNLL-03 and GermEval, there are 12
models in total.

4.1.2 Training and training parameters
Initially, each model setup is trained on Europarl alone using the same parameter configurations
as in the first experiment.

Then, each of the existing pre-trained models is finetuned on Europarl, using a learning rate
of 0.05 for 50 additional epochs.

Two types of evaluations were performed:

• Cross-corpus evaluation, that is, evaluating the pre-trained models on the test data of
Europarl before finetuning. I refer to the F-scores as before-finetuning results.

• Evaluation of the models on the test data of Europarl after finetuning. I refer to the
F-scores as after-finetuning results.

4.1.3 Results
After training and evaluating all setups on the Europarl dataset, the best performing model
achieved an F-score of 80.12. This is the baseline against which the after-finetuning results are
compared.

Table 4.2 shows the before- and after-finetuning results on the Europarl test data. Every
finetuned model outperforms the baseline. Finetuning the models significantly improves their
performance on the new domain, compared to their cross-corpus performance. The degree of

38 NER performance across other domain settings

improvement is indicated by the difference between the F-scores. Large differences show that
the models do not generalize well on the new domain, until they are finetuned on it to pick up
on new entities.

Table 4.2: Evaluation results on the test set of Europarl before and after finetuning

Model Source Target Before-finetuning After-finetuning Difference

BASE CoNLL2003 Europarl 60.99 82.63 +21,64
BASE+CHAR CoNLL2003 Europarl 68.33 87.18 +18.85
BASE+FLAIR CoNLL2003 Europarl 71.69 91.83 +20.14
BASE+mBERT CoNLL2003 Europarl 75.53 89.16 +13.63
BASE+GBERT CoNLL2003 Europarl 76.24 88.16 +11.92
BASE+GELECTRA CoNLL2003 Europarl 75.62 88.09 +12.47
BASE GermEval14 Europarl 56.98 84.54 +27.56
BASE+CHAR GermEval14 Europarl 57.97 87.69 +29.72
BASE+FLAIR GermEval14 Europarl 62.89 93.09 +30.2
BASE+mBERT GermEval14 Europarl 61.66 89.46 +27.8
BASE+GBERT GermEval14 Europarl 62.05 89.37 +27.32
BASE+GELECTRA GermEval14 Europarl 68.95 90.06 +21.11

Observations – The following observations are highlighted:

1. MISC tags hurt the performance of the models pre-trained on GermEval. Let’s
consider the twin models BASE, with CoNLL-03 and GermEval as source datasets.
Before they get finetuned, they are evaluted on Europarl. BASE pre-trained on CoNLL-
03 achieves an F-score of 60.99 and BASE pre-trained on GermEval performs worse,
reaching an F-score of 56.98. In order to understand the reason behind the relatively poor
performance of the second model, both F-scores are broken down into individual F-scores
for each entity type. Figure 4.1 illustrates the difference between scores for each entity
type. GermEval’s BASE achieves higher scores for PER, ORG and LOC types. It’s the
MISC tags that substantially decrease the overall score. Charts for other model setups
follow the same trend and can be found in the Appendix.

MISC entities are relatively fewer in number and the hardest to extract, as there is not
a proper definition of what constitutes such an entity. Typically, MISC is an entity type
which is not a person, location or organization. Events, products, nationalities, works of
art can be included in the MISC category. However, every dataset has its own definition
of MISC. In CoNLL-03 and Europarl, adjectives related to geopolitics such as "europäis-
cher" or "deutscher" are considered to be MISC entities. In GermEval, such adjectives
are not regarded as entities at all, therefore models trained on this dataset will not de-
tect them. As they make up a large portion of MISC entities, the overall performance of
models pre-trained on GermEval is greatly affected by them.

2. Finetuning mitigates the impact of dissimilar entity definitions among datasets. If
models pre-trained on CoNLL-03 perform better on the Europarl before being finetuned,
the same does not hold after finetuning. All the models with GermEval as the source

Building a multilingual NER model exploiting mBERT 39

PER ORG LOC MISC
Entity Type

0

20

40

60

80

100

F-
sc

or
e

CoNLL-03
GermEval

Figure 4.1: Breakdown of the before-finetuning scores for BASE. Red and blue represent the
scores for the model pre-trained on CoNLL-03 and GermEval, respectively.

dataset outperform their "twins" pre-trained on CoNLL-03. This suggests that finetun-
ing help the models detect new mentions not seen during training on the source dataset.
BASE+FLAIR, pre-trained on GermEval, performed the best after finetuning (93.09).
The same finetuned model, pre-trained on CoNLL-03, had the second best performance.

4.2 Building a multilingual NER model exploiting mBERT

So far, language models have significantly improved the performance of the BiLSTM-CRF ar-
chitecture on German NER.

Recent research has further expanded their potential, by training language models, which
generalise along the language axis [11][35]. Such potential can be used in many sequence la-
beling applications. In real-life scenarios, we are often faced with texts in different languages.
In NER, the standard approach is using a language detection mechanism to choose the appro-
priate monolingual NER model for the data. This approach requires a series of trained models,
embeddings and annotated training data for multiple languages.

Akbik et al. [1] leveraged language modeling with RNNs to model multilingual text at
the character level and used it to create a single model for downstream tasks, like PoS-tagging
and NER on multilingual text. Instead of Akbik’s character-level language model, this work
investigates the cross-lingual capabilities of multilingual BERT.

40 NER performance across other domain settings

4.2.1 Experimental setup
In order to compare the embeddings from the character-level LM (baseline) and mBERT, I feed
them as input to the BiLSTM-CRF module and evaluate it on multiple datasets at once.

• German and English dataset from CoNLL-03 Shared-Task

• Dutch dataset from CoNLL-02 Shared-Task

The datasets are merged, shuffled and used to train the network on a trilingual entity recognition
task. Both models are trained for 150 epochs, without changing the hyper-parameters from the
first experiment.

4.2.2 Results
The results are presented in Table 4.3 for both approaches. Multilingual BERT embeddings
perform better for Dutch, while Akbik’s embeddings achieve a higher F-score in English and
German. Overall, the NER performance is slightly better, using Akbik’s RNN-based language
model, with a difference of 0.5 percentage points in F-scores.

Table 4.3: Performance scores for multilingual NER

Baseline My approach
Language Precision Recall Fscore Precision Recall Fscore

German 82.93 81.46 82.19 84.74 79.55 82.06
English 91.77 92.36 92.06 90.05 90.14 90.10
Dutch 89.17 88.76 88.96 89.75 88.66 89.20
Overall 88.70 87.56 88.14 88.65 86.66 87.64

The character-level language model used by Akbik to generate the word embeddings has
been trained on 6 languages: English, German, French, Italian, Dutch and Polish. The training
corpus contains data from Wikipedia, parliament speeches, movie subtitles, news commentary
and books [1]. On the other side multilingual BERT has been trained on Wikipedia corpora
including 104 languages. Both embeddings perform similarly for the task of NER. For Ger-
man, the baseline outperforms the proposed approach by a small margin (0.13 points). For
Dutch, mBERT embeddings seem to be slightly more effective, as they surpass the baseline
by 0.24 points. The baseline performs convincingly better for English NER, where the dif-
ference is significant, 1.96 points. Multilingual BERT representations have shown to perform
cross-lingual generalization well for NER. Therefore mBERT might be a good choice for build-
ing NER models that extract entities in not very "well-resourced" languages. However, more
experiments need to be conducted to measure how beneficial they are for such scenarios.

Chapter 5
Python-based model integration with DKPro
Core

5.1 NER models as part of pipelines
In computing, a pipeline is a chain of data processing elements, arranged so that the output of
one element is the input of the next one. NLP pipelines perform sequential processing of speech
and text. Each level builds on the output of the previous level, thus breaking down the target
task into several smaller tasks. Figure 5.1 shows an example of several components combined
together.

Figure 5.1: An NLP pipeline

For entity extraction, the text is extracted from the input file, broken down into small chunks
(i.e. sentences, tokens), analyzed and processed by an NER system, which identifies and labels
mentions of entities. They can be useful for other downstream tasks like information extrac-
tion, question answering or entity linking. Therefore, NER is often a central component in NLP
pipelines.

In science, it’s important to share the experimental setups and pipelines with the rest of the
research community, to reproduce the results or potentially further improve them. DKPro Core
has provided a concept for shareable pipelines based on portable components and resources in
NLP [13]. The components are distributed via a repository within the Java-ecosystem. In order
to make them interoperable, DKPro Core employs Apache UIMA1.

UIMA ("Unstructured Information Management Architecture") is a platform for unstruc-
tured analytics through the reuse of analysis components. Each component implements inter-
faces defined by the framework and provides self-describing metadata via XML descriptor files.
The framework manages the data flow between components.

1Ferrucci and Lally, 2004, https://uima.apache.org/

42 Python-based model integration with DKPro Core

DKPro Core collection includes four third-party NER components from popular NLP tool
suites (OpenNLP2, CoreNLP3, LingPipe4, NLP4J5). However, they rely on traditional ma-
chine learning methods (e.g CoreNLP’s CRFClassifier). The recent DL-based approaches have
achieved better performance but including them as third-party NLP tools in the collection is
not a trivial process. Most state-of-the-art neural approaches are implemented in Python, where
the best deep learning libraries (e.g. PyTorch, TensorFlow) are. The authors of DKPro have
developed a Python library called dkpro-cassis. It is a Python implementation of a special
data structure, which represents an object to be enriched with annotations. Because this data
structure is defined by UIMA framework, the object enriched with annotations from a DL-
based model can be accessed by other UIMA-based components. This eases the integration of
Python-based systems in DKPro Core’s text analysis workflows.

The following section describes the process of connecting a Python-based NER model with
DKpro Core’s Java-based components, using dkpro-cassis as an "adapter".

5.2 Workflow
The process is implemented as a Maven project in Eclipse. Maven is a project management tool
that is based on POM (Project Object Model). DKPro Core uses the Maven Dependency Plugin
to check if all dependencies used directly within the code inside the project are also explicitly
declared in the <dependencies> section of POM. The dependencies for the following libraries
were declared:

• dkpro-core-io-text-asl

• dkpro-core-opennlp-asl

• dkpro-core-io-xmi-asl

The first processing step is reading the input file. TextReader class from ’dkpro-core-io-text-
asl’ is suitable for reading plain text files. Tokenization is performed by OpenNlpSegmenter
class from ’dkpro-core-opennlp-asl’. It splits the text into sentences and sentences into tokens,
by assigning a start and end offset to each of them. This information is written to an XMI
file, using the XMIWriter class provided by ’dkpro-core-io-xmi-asl’ module. Additionally, a
TypeSystem file is generated, whose function becomes clear in the next step.

In a Python script, dkpro-cassis instantiates an object belonging to the before-mentioned
data structure. It is referred to as a CAS ("Common Analysis System") object and stores the
content from the XMI file generated earlier by the XMI writer, also known as ’Subject of
Analysis’ (SofA). The TypeSystem file determines how components store and retrieve their
data from the CAS object. Based on the system type, the annotations can be added. Here, the
chosen type is NamedEntity, whose annotations consist of a starting position offset, end position
offset and a value that represents an entity type (e.g. person, organization etc.)

The NER model is then loaded and it is used to predict the NER tags on the SofA string. For
each detected entity, the annotations are created, defined by NamedEntity type. They are added

2https://www.tutorialspoint.com/opennlp/opennlp_named_entity_recognition.htm
3https://stanfordnlp.github.io/CoreNLP/ner.html
4http://www.alias-i.com/lingpipe/demos/tutorial/ne/read-me.html
5https://emorynlp.github.io/nlp4j/components/named-entity-recognition.html

Challenges 43

to the CAS object, via add_annotation method, to be saved later as an XMI file. An XMI reader
reads the content of the new file and prints out the detected mentions and their entity type.

Figure 5.2 illustrates the process by showing how components are connected to each other.

Figure 5.2: DKPRo Core Pipeline using a Python-based NER model

5.3 Challenges
Unfortunately, this scheme has some drawbacks, which need to be addressed:

The NER model can be loaded and used for predictions only through Python functions.
The ProcessBuilder API creates an operating system process to launch Python and execute the

44 Python-based model integration with DKPro Core

Python script within a Java process. While this provides high flexibility, regarding different
DL-based NER models to be used as annotators, it also introduces a severe overhead, in terms
of code and installation procedure. The implementation assumes there is a working Python
installation. Furthermore all the relevant Python libraries need to be downloaded beforehand.
Additionally, the NER model has to be loaded in the memory, every time the script is executed.
This might add a time overhead, in case the NER model is too big. The NER model used in this
implementation has a size of approximately 2GB and takes around 5-6 seconds to be loaded
and ready to be used.

Chapter 6
Discussion and Conclusion

In this chapter, I summarize the outline of the thesis. Approaches for solving the task of NER
have evolved throughout the years, from rule-based approaches to deep neural networks. The
recent DL-based approaches have achieved a huge success in many NLP fields. They learn
complex features from data via non-linear transformation. They do not rely on handcrafted fea-
tures, whose design requires domain expertise and engineering skills. The focus is on German
NER. Although German is not as widely-spoken as English, it is a well-resourced language,
allowing for German NER to receive a fair share of attention. The capitalization of not only
proper names, but all nouns and the presence of compound words makes the task difficult in
this language particularly.

This thesis quantifies the impact of different types of word embeddings on two domains
in German NER. Both non-contextual and contextual embeddings were considered. There
were in total six model setups employing the state-of-the-art BiLSTM-CRF architecture with
different embedding configurations. They were trained and tested on the two largest avail-
able datasets in German, CoNLL-03 and GermEval. All the models performed better on the
GermEval dataset. It was shown that contextual embeddings are beneficial for NER models.
Transformer-based language models such as GBERT and GELECTRA, pre-trained on German
data, achieved the highest scores. To better understand their effectiveness, I conducted a fine-
grained analysis to distinguish the effect of these embeddings from the rest. The results show
that GBERT/GELECTRA-based embeddings generalize better to entity mentions that span over
multiple tokens or mentions with ambiguous entity types (low consistency).

I also improved the performance on Europarl, a low-data domain in German. Finetuning
the existing pre-trained models on Europarl led to better results than the models trained on
this dataset alone. This shows that ’small-data’ scenarios can benefit from using knowledge
from a model pre-trained on a bigger dataset. Through finetuning, models learn to identify
new examples of entities. This is beneficial, as it allows DL-based models to adjust to recent
mentions, using a little amount of training data.

In the third experiment, two single-model approaches to multilingual text data are compared.
The difference between the approaches is the type of word embeddings being used. The baseline
uses embeddings from an RNN-based LM, pre-trained on six languages, while the proposed
approach extracts its embeddings from multilingual BERT, pre-trained on 104 languages. Both
models are trained on a mix of data from 3 different languages: German, English and Dutch.
The proposed model performed slightly better only on Dutch data, but the overall F-score was

46 Discussion and Conclusion

higher for the baseline. However, the difference between the scores was tight, showing that
multilingual BERT is a good choice for multilingual NER.

The final step is providing a re-usable implementation for one of the pre-trained models
from previous experiments. DKPro-Core is an open-source collection of Java-based NLP com-
ponents, which can be combined into shareable pipelines. Integrating a Python-based NER
model in a simple pipeline in this framework requires an "adapter", such that its output can
be accessed by the rest of Java-based components. The integration scheme introduces some
overhead, in terms of processing time, code and installation procedure.

6.1 Future Work
There is still work to be done. NER is a hot research area, with new developments and im-
provements happening every year. One interesting aspect to investigate would be whether the
temporal factor of the data can be used to obtain better models. During finetuning of pre-trained
models on another dataset, temporal information is usually disregarded. However, languages
evolve with time, new mentions of entities are added every year and NER models might not
generalize well.

Another challenge is integrating a Python-based model in Java-based systems. In this work,
the model was accessed through a Python script. However, this is not the most efficient method.
An alternative solution is using Deep Java library, a Java framework for deep learning. Because
of the limited time and lack of experience with this framework, I was not able to explore this
possibility.

Finally, further finetuning of the embeddings on the specific domain can potentially boost
the performance of NER models. Additionally, contextualized embeddings from pre-trained
XLNet language models have achieved impressive results for NER, while this thesis was being
written. Further work could explore recent possibilities for attention/regularization mechanisms
to better include context and improve generalization.

Appendices

Appendix A
Appendix

A.1 Bucket-wise analysis

A.2 Breakdown of the before-finetuning results on Europarl.
Tables A.3 and A.4 break down the results in the "Before-finetuning" column of Table 4.2. Red
and blue represent the datasets the models have been trained on, repectively CoNLL-03 and
GermEval.

A.3 Bucketing Interval Strategy
The bucketing interval with respect to attribute is described here. The range of attribute values
is divided into 4 discrete parts. For a given attribute, the number of entities covered by an at-
tribute value varies. For example, for label consistency, there is a large portion of test entities
with eCon = 0 and eCon = 1.

• Label consistency (eCon,tCon): The entities in the test set with eCon = 0 and eCon = 1
are put in the first bucket and last bucket, respectively. The rest of the entities are divided
equally into 2 buckets. This strategy of eCon is suitable for tCon, too.

• Frequency (eFre,tFre): The entities in the test set with attribute value eFre = 0 go into the
first bucket; then, the rest of the entities are equally divided into 3 buckets. This strategy
of eFre is suitable for tFre.

Bucketing Interval Strategy 49

Table A.1: Bucket-wise analysis for each model. Numbers from 0 to 3 represent the four
buckets, from the smallest to the largest attribute values. The "number/number" pairs in the
horizontal axis represent the buckets of a specific attribute on which a model achieved its worst
and best performance, respectively. Green bins represent the difference between the best and
worst performance.

CoNLL-03 GermEval

Model

eC
on

tC
on

eF
re

tF
re

eL
en

sL
en

eD
en

eC
on

tC
on

eF
re

tF
re

eL
en

sL
en

eD
en

BASE 0/2 0/3 0/2 3/2 3/1 0/2 0/3
0

10

20

30

40

50

F1
sc

or
es

0/3 0/3 0/3 3/2 3/0 3/0 3/1
0

10

20

30

40

50

F1
sc

or
es

BASE+CHAR 1/3 1/3 0/2 3/2 3/1 1/2 0/3
0

10

20

30

40

50

F1
sc

or
es

0/3 0/3 0/3 3/2 3/0 3/0 3/1
0

10

20

30

40

50

F1
sc

or
es

BASE+FLAIR 1/3 1/3 0/2 3/2 3/1 1/2 0/3
0

10

20

30

40

50

F1
sc

or
es

0/3 0/3 0/3 3/2 3/0 3/0 3/1
0

10

20

30

40

50

F1
sc

or
es

50 Appendix

Table A.2: Continued bucket-wise analysis

CoNLL-03 GermEval

Model

eC
on

tC
on

eF
re

tF
re

eL
en

sL
en

eD
en

eC
on

tC
on

eF
re

tF
re

eL
en

sL
en

eD
en

BASE+mBERT 1/3 0/3 0/3 3/2 3/1 1/2 0/3
0

10

20

30

40

50

F1
sc

or
es

1/3 0/3 0/3 3/1 3/1 3/0 2/1
0

10

20

30

40

50

F1
sc

or
es

BASE+GBERT 1/3 0/3 0/3 3/2 3/1 0/2 0/2
0

10

20

30

40

50

F1
sc

or
es

1/3 0/3 0/3 3/2 3/1 2/0 3/1
0

10

20

30

40

50

F1
sc

or
es

Bucketing Interval Strategy 51

Table A.3: Breakdown of the before-finetuning scores for BASE+CHAR, BASE+FLAIR and
BASE+mBERT . Red and blue represent the scores for the model pre-trained on CoNLL-03 and
GermEval, respectively.

Model Chart

BASE+CHAR
PER ORG LOC MISC

0

20

40

60

80

CoNLL-03
GermEval

BASE+FLAIR
PER ORG LOC MISC

0

20

40

60

80

100
CoNLL-03
GermEval

BASE+mBERT
PER ORG LOC MISC

0

20

40

60

80

100
CoNLL-03
GermEval

52 Appendix

Table A.4: Breakdown of the before-finetuning scores for BASE+GBERT and
BASE+GELECTRA. Red and blue represent the scores for the model pre-trained on
CoNLL-03 and GermEval, respectively.

Model Chart

BASE+GBERT
PER ORG LOC MISC

0

20

40

60

80

100
CoNLL-03
GermEval

BASE+GELECTRA
PER ORG LOC MISC

0

20

40

60

80

100
CoNLL-03
GermEval

Bucketing Interval Strategy 53

• Sentence length (sLen) and entity density (eDen): the test entities are divided equally into
4 buckets.

• Entity length (eLen): Generally, entities do not span over more than 4-5 words, however
there are rare cases when they do. Therefore, the entities in the test set with lengths of 1,
2, 3, and longer than 4 are separated into four buckets, respectively.

The bucket values for each attribute are given in the tables below:

Table A.5: Boundary values for GermEval

Attribute Bucket 0 Bucket 1 Bucket 2 Bucket 3

eCon [0,]]0,0.5]]0.5,0.999] [1,]
tCon [0,]]0,0.5]]0.5,0.999] [1,]
eFre [0,]]0,0.008]]0.008,0.0056]]0.056, 0.973]
tFre [0,]]0, 0.002]]0.002, 0.013]]0.013, 1]
eLen [1,] [2,] [3,] [4,20]
sLen [1,16] [17, 23] [24, 31] [32, 48]
eDen [0.0217, 0.0952]]0.0952, 0.1515]]0.1515, 0.2381]]0.2381, 0.8889]

Table A.6: Boundary values for CoNLL

Attribute Bucket 0 Bucket 1 Bucket 2 Bucket 3

eCon [0,]]0,0.5]]0.5,0.999] [1,]
tCon [0,]]0,0.5]].5,0.999] [1,]
eFre [0,]]0,0.013]]0.013, 0.057]]0.057, 0.786]
tFre [0,]]0, 0.002]]0.002, 0.016]]0.016, 1]
eLen [1,] [2,] [3,] [4,9]
sLen [1,15] [16, 24] [25, 33] [34, 107]
eDen [0.0161, 0.1111]]0.1111, 0.1714]]0.1714, 0.2727]]0.2727, 1]

The code and the best performing models for German NER can be accessed through this
Google Drive link.

https://drive.google.com/drive/folders/11F4b8kJ0lkhK8jRwRRurTH9DCSFQjQmq?usp=sharing

Bibliography

[1] A. Akbik, Tanja Bergmann, and Roland Vollgraf. Multilingual sequence labeling with one
model. 2019.

[2] Alan Akbik, Duncan Blythe, and Roland Vollgraf. Contextual string embeddings for se-
quence labeling. In Proceedings of the 27th International Conference on Computational
Linguistics, pages 1638–1649, Santa Fe, New Mexico, USA, August 2018. Association
for Computational Linguistics.

[3] Y. Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with
gradient descent is difficult. IEEE transactions on neural networks / a publication of the
IEEE Neural Networks Council, 5:157–66, 02 1994.

[4] Darina Benikova, Chris Biemann, and Marc Reznicek. NoSta-D named entity annotation
for German: Guidelines and dataset. In Proceedings of the Ninth International Confer-
ence on Language Resources and Evaluation (LREC’14), pages 2524–2531, Reykjavik,
Iceland, May 2014. European Language Resources Association (ELRA).

[5] Darina Benikova, Seid Muhie Yimam, Prabhakaran Santhanam, and Chris Biemann. Ger-
maner: Free open german named entity recognition tool. In Bernhard Fisseni, Bernhard
Schröder, and Torsten Zesch, editors, Proceedings of the International Conference of the
German Society for Computational Linguistics and Language Technology, GSCL 2015,
University of Duisburg-Essen, Germany, 30th September - 2nd October 2015, pages 31–
38. GSCL e.V., 2015.

[6] Daniel M. Bikel, Richard M. Schwartz, and Ralph M. Weischedel. An algorithm that
learns what’s in a name. Mach. Learn., 34(1-3):211–231, 1999.

[7] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomás Mikolov. Enriching word
vectors with subword information. Trans. Assoc. Comput. Linguistics, 5:135–146, 2017.

[8] Branden Chan, Stefan Schweter, and Timo Möller. German’s next language model. In Do-
nia Scott, Núria Bel, and Chengqing Zong, editors, Proceedings of the 28th International
Conference on Computational Linguistics, COLING 2020, Barcelona, Spain (Online), De-
cember 8-13, 2020, pages 6788–6796. International Committee on Computational Lin-
guistics, 2020.

Bibliography 55

[9] Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning. ELECTRA:
pre-training text encoders as discriminators rather than generators. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-
30, 2020. OpenReview.net, 2020.

[10] Michael Collins and Yoram Singer. Unsupervised models for named entity classification.
Proceedings of the 1999 Joint SIGDAT Conference on EMNLP and VLC, 12 2002.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. In Jill Burstein, Christy
Doran, and Thamar Solorio, editors, Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long
and Short Papers), pages 4171–4186. Association for Computational Linguistics, 2019.

[12] Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A. Smith.
Transition-based dependency parsing with stack long short-term memory. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing of the Asian Federation
of Natural Language Processing, ACL 2015, July 26-31, 2015, Beijing, China, Volume 1:
Long Papers, pages 334–343. The Association for Computer Linguistics, 2015.

[13] Richard Eckart de Castilho and Iryna Gurevych. A broad-coverage collection of portable
NLP components for building shareable analysis pipelines. In Proceedings of the Work-
shop on Open Infrastructures and Analysis Frameworks for HLT, pages 1–11, Dublin,
Ireland, August 2014. Association for Computational Linguistics and Dublin City Univer-
sity.

[14] Oren Etzioni, Michael J. Cafarella, Doug Downey, Ana-Maria Popescu, Tal Shaked,
Stephen Soderland, Daniel S. Weld, and Alexander Yates. Unsupervised named-entity
extraction from the web: An experimental study. Artif. Intell., 165(1):91–134, 2005.

[15] Manaal Faruqui and Sebastian Padó. Training and evaluating a german named entity
recognizer with semantic generalization. In Proceedings of KONVENS 2010, Saarbrücken,
Germany, 2010.

[16] Jinlan Fu, Pengfei Liu, and Graham Neubig. Interpretable multi-dataset evaluation for
named entity recognition. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu,
editors, Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2020, Online, November 16-20, 2020, pages 6058–6069. Association
for Computational Linguistics, 2020.

[17] Dan Gillick, Cliff Brunk, Oriol Vinyals, and Amarnag Subramanya. Multilingual lan-
guage processing from bytes. In Kevin Knight, Ani Nenkova, and Owen Rambow, ed-
itors, NAACL HLT 2016, The 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, San Diego
California, USA, June 12-17, 2016, pages 1296–1306. The Association for Computational
Linguistics, 2016.

56 Bibliography

[18] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidirec-
tional lstm and other neural network architectures. Neural Networks, 18(5):602–610,
2005. IJCNN 2005.

[19] Ralph Grishman and Beth Sundheim. Message Understanding Conference- 6: A brief
history. In COLING 1996 Volume 1: The 16th International Conference on Computational
Linguistics, 1996.

[20] Jiafeng Guo, Gu Xu, Xueqi Cheng, and Hang Li. Named entity recognition in query. In
Proceedings of the 32nd International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, SIGIR ’09, page 267–274, New York, NY, USA, 2009.
Association for Computing Machinery.

[21] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput.,
9(8):1735–1780, November 1997.

[22] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional LSTM-CRF models for sequence
tagging. CoRR, abs/1508.01991, 2015.

[23] Jun’ichi Kazama and Kentaro Torisawa. Exploiting Wikipedia as external knowledge
for named entity recognition. In Proceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 698–707, Prague, Czech Republic, June 2007. Association for
Computational Linguistics.

[24] Yoon Kim, Yacine Jernite, David A. Sontag, and Alexander M. Rush. Character-aware
neural language models. In Dale Schuurmans and Michael P. Wellman, editors, Proceed-
ings of the Thirtieth AAAI Conference on Artificial Intelligence, February 12-17, 2016,
Phoenix, Arizona, USA, pages 2741–2749. AAAI Press, 2016.

[25] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami, and
Chris Dyer. Neural architectures for named entity recognition. In Proceedings of the
2016 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 260–270, San Diego, California, June
2016. Association for Computational Linguistics.

[26] Wenhui Liao and Sriharsha Veeramachaneni. A simple semi-supervised algorithm for
named entity recognition. In Proceedings of the NAACL HLT 2009 Workshop on Semi-
supervised Learning for Natural Language Processing, pages 58–65, Boulder, Colorado,
June 2009. Association for Computational Linguistics.

[27] Wang Ling, Chris Dyer, Alan W. Black, Isabel Trancoso, Ramon Fermandez, Silvio Amir,
Luís Marujo, and Tiago Luís. Finding function in form: Compositional character mod-
els for open vocabulary word representation. In Lluís Màrquez, Chris Callison-Burch,
Jian Su, Daniele Pighin, and Yuval Marton, editors, Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal,
September 17-21, 2015, pages 1520–1530. The Association for Computational Linguis-
tics, 2015.

Bibliography 57

[28] Xuezhe Ma and Eduard H. Hovy. End-to-end sequence labeling via bi-directional lstm-
cnns-crf. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics, ACL 2016, August 7-12, 2016, Berlin, Germany, Volume 1: Long Papers. The
Association for Computer Linguistics, 2016.

[29] Andrew McCallum and Wei Li. Early results for named entity recognition with condi-
tional random fields, feature induction and web-enhanced lexicons. In Proceedings of the
Seventh Conference on Natural Language Learning at HLT-NAACL 2003, pages 188–191,
2003.

[30] Paul McNamee and James Mayfield. Entity extraction without language-specific re-
sources. In COLING-02: The 6th Conference on Natural Language Learning 2002
(CoNLL-2002), 2002.

[31] Andrei Mikheev. A knowledge-free method for capitalized word disambiguation. In Pro-
ceedings of the 37th Annual Meeting of the Association for Computational Linguistics,
pages 159–166, College Park, Maryland, USA, June 1999. Association for Computational
Linguistics.

[32] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. In Yoshua Bengio and Yann LeCun, editors, 1st Inter-
national Conference on Learning Representations, ICLR 2013, Scottsdale, Arizona, USA,
May 2-4, 2013, Workshop Track Proceedings, 2013.

[33] David Nadeau, Peter D. Turney, and Stan Matwin. Unsupervised named-entity recog-
nition: Generating gazetteers and resolving ambiguity. In Luc Lamontagne and Mario
Marchand, editors, Advances in Artificial Intelligence, pages 266–277, Berlin, Heidelberg,
2006. Springer Berlin Heidelberg.

[34] Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors
for word representation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar, October 2014.
Association for Computational Linguistics.

[35] Telmo Pires, Eva Schlinger, and Dan Garrette. How multilingual is multilingual bert? In
Anna Korhonen, David R. Traum, and Lluís Màrquez, editors, Proceedings of the 57th
Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy,
July 28- August 2, 2019, Volume 1: Long Papers, pages 4996–5001. Association for Com-
putational Linguistics, 2019.

[36] Yael Ravin and Nina Wacholder. Extracting names from natural-language text. 11 1998.

[37] Hadas Raviv, Oren Kurland, and David Carmel. Document retrieval using entity-based
language models. In Proceedings of the 39th International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’16, page 65–74, New York,
NY, USA, 2016. Association for Computing Machinery.

58 Bibliography

[38] Nils Reimers and Iryna Gurevych. Reporting score distributions makes a difference: Per-
formance study of LSTM-networks for sequence tagging. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language Processing, pages 338–348, Copen-
hagen, Denmark, September 2017. Association for Computational Linguistics.

[39] Matthias Richter, Uwe Quasthoff, Erla Hallsteinsdóttir, and Chris Biemann. C.: Exploiting
the leipzig corpora collection. 01 2006.

[40] Martin Riedl and Sebastian Padó. A named entity recognition shootout for German. In
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 120–125, Melbourne, Australia, July 2018. Association
for Computational Linguistics.

[41] Stefan Schweter and Johannes Baiter. Towards robust named entity recognition for historic
german. In Isabelle Augenstein, Spandana Gella, Sebastian Ruder, Katharina Kann, Burcu
Can, Johannes Welbl, Alexis Conneau, Xiang Ren, and Marek Rei, editors, Proceedings of
the 4th Workshop on Representation Learning for NLP, RepL4NLP@ACL 2019, Florence,
Italy, August 2, 2019, pages 96–103. Association for Computational Linguistics, 2019.

[42] Satoshi Sekine and Chikashi Nobata. Definition, dictionaries and tagger for extended
named entity hierarchy. In Proceedings of the Fourth International Conference on Lan-
guage Resources and Evaluation (LREC’04), Lisbon, Portugal, May 2004. European Lan-
guage Resources Association (ELRA).

[43] Satoshi Sekine and Elisabete Ranchhod. Named entities: recognition, classification and
use., Jul 2009.

[44] Burr Settles. Biomedical named entity recognition using conditional random fields and
rich feature sets. In Proceedings of the International Joint Workshop on Natural Lan-
guage Processing in Biomedicine and its Applications (NLPBA/BioNLP), pages 107–110,
Geneva, Switzerland, August 28th and 29th 2004. COLING.

[45] Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-2003 shared
task: Language-independent named entity recognition. In Proceedings of the Seventh
Conference on Natural Language Learning at HLT-NAACL 2003, pages 142–147, 2003.

[46] Antonio Toral and Rafael Muñoz. A proposal to automatically build and maintain
gazetteers for named entity recognition by using Wikipedia. In Proceedings of the Work-
shop on NEW TEXT Wikis and blogs and other dynamic text sources, 2006.

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle
Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N.
Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, Decem-
ber 4-9, 2017, Long Beach, CA, USA, pages 5998–6008, 2017.

[48] Vikas Yadav and Steven Bethard. A survey on recent advances in named entity recognition
from deep learning models. In Emily M. Bender, Leon Derczynski, and Pierre Isabelle,

Bibliography 59

editors, Proceedings of the 27th International Conference on Computational Linguistics,
COLING 2018, Santa Fe, New Mexico, USA, August 20-26, 2018, pages 2145–2158. As-
sociation for Computational Linguistics, 2018.

[49] Vikas Yadav, Rebecca Sharp, and Steven Bethard. Deep affix features improve neural
named entity recognizers. In Proceedings of the Seventh Joint Conference on Lexical and
Computational Semantics, pages 167–172, New Orleans, Louisiana, June 2018. Associa-
tion for Computational Linguistics.

[50] Hirotoshi Yamada, T. Kudo, and Y. Matsumoto. Japanese named entity extraction using
support vector machine. 01 2001.

[51] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and
Quoc V. Le. Xlnet: Generalized autoregressive pretraining for language understanding. In
Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B.
Fox, and Roman Garnett, editors, Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
December 8-14, 2019, Vancouver, BC, Canada, pages 5754–5764, 2019.

[52] Shaodian Zhang and Noémie Elhadad. Unsupervised biomedical named entity recogni-
tion: Experiments with clinical and biological texts. Journal of Biomedical Informatics,
46(6):1088–1098, 2013. Special Section: Social Media Environments.

[53] G. Zhou and J. Su. Named entity recognition using an hmm-based chunk tagger. In
Proceedings of the 40th Annual Annual Meeting of the Association for Computational
Linguistics (ACL’02), Philadelphia,PA, 2002.

[54] Jianhan Zhu, Victoria S. Uren, and Enrico Motta. Espotter: Adaptive named entity recog-
nition for web browsing. In Klaus-Dieter Althoff, Andreas Dengel, Ralph Bergmann,
Markus Nick, and Thomas Roth-Berghofer, editors, Professional Knowledge Manage-
ment, Third Biennial Conference, WM 2005, Kaiserslautern, Germany, April 10-13, 2005,
Revised Selected Papers, volume 3782 of Lecture Notes in Computer Science, pages 518–
529. Springer, 2005.

	Introduction
	Motivation
	Contributions

	Named-entity Recognition
	Definition of NER
	Traditional approaches for Named-Entity Recognition
	Rule-based Approaches
	Unsupervised Learning Approaches
	Supervised Learning Approaches

	Deep Learning-based Approaches
	Input word representations
	Context Encoders
	Recurrent Neural Network
	Long Short-Term Memory Network
	Bidirectional LSTM Network
	Language Models
	Transformers

	Tag Decoders
	Softmax
	Conditional Random Field

	Evaluation
	German NER
	German NER datasets
	CoNLL-03
	GermEval

	Related work in German NER

	Comparative evaluation of embeddings for German NER
	Chosen architecture for evaluation
	Evaluation
	Datasets
	Dataset pre-processing

	Chosen embeddings
	Experiment
	Experimental setup
	Model characteristics and training parameters
	Implementation, Training and Tagging Speed

	Results
	Comparative evaluation
	Fine-grained evaluation
	Model-wise analysis
	Bucket-wise analysis

	Contributing in German NER

	NER performance across other domain settings
	Finetuning for a "small-data" scenario
	Experimental setup
	Training and training parameters
	Results

	Building a multilingual NER model exploiting mBERT
	Experimental setup
	Results

	Python-based model integration with DKPro Core
	NER models as part of pipelines
	Workflow
	Challenges

	Discussion and Conclusion
	Future Work

	Appendices
	Appendix
	Bucket-wise analysis
	Breakdown of the before-finetuning results on Europarl.
	Bucketing Interval Strategy

