
VERSION: VS. 0.3.0
2020-06

AUTHORS: Luis F.C. Figueredo, Mehmet Dogar, Anthony Cohn
University of Leeds

Contact information: figueredo@ieee.org

RHuMAn - Documentation
Release 0.3.0

Rapid Human Manipulability Assessment
(RHuMAn)

Contents

Introduction to Human Comfortability...5
Rapid Human Manipulability Assessment...6
rHuManModel.. 9

Examples - Constructor..10
Variables...10
rHuManModel / getFKM...13
rHuManModel / getIK..14
rHuManModel / getPos.. 15
rHuManModel / getOrientation..15
rHuManModel / getJacobGeom..16
rHuManModel / checkSelfCollision.. 17
rHuManModel / getSelfCollisionPenalties...17
rHuManModel / getRandJoints... 18
rHuManModel / getRandGaussianJoints.. 19

rHuManManipulability...22
Examples - Constructor..23
Variables...24
rHuManManipulability / build_AugmentedComfortDataset.. 28
rHuManManipulability / build_TSComfortability... 29
rHuManManipulability / compute_gainMuscle..30
rHuManManipulability / get_ComfortCost... 31
rHuManManipulability / get_muscularCost... 33
rHuManManipulability / get_RULA...34
rHuManManipulability / get_TSComfortDataset...36
rHuManManipulability / handleErgoIndex2RULA.. 37
rHuManManipulability / handleRula2ErgoIndex...37
rHuManManipulability / plot_comfortability... 38
RHuManManipulability / reshape_Comfortability...39
rHuManManipulability / reshape_TSComfortability... 40
rHuManManipulability / setForces4Manipulability..41

rHuMAn for USERS..43
License..50
People...51

Introduction to Human Comfortability

The ability of computing a quality index for different configurations and
manipulation tasks has been widely used in robotics yet little explored in human
manipulation and physical human-robot collaboration (pHRC).

Most of the scarce works that have so far addressed the quality of human arm
posture have either focused on task heuristics, human biomechanics capabilities or
ergonomics alone leading to elaborate methods that are narrow to task-specific
applications. Indeed, predicting and/or proactively shaping human posture through
pHRC is a complex procedure that often involves different optimization techniques
over a highly redundant muscular- and joint-spaces.

This software instead proposes solving this problem through a combination of
extensive offline analysis of the workspace capabilities of the human arm (in terms
of muscular load, ergonomics, and joint/kinematic/force constraints) with efficient
online processing. The proposed approach builds a human manipulation
performance distribution in terms of muscular and ergonomy-based metrics in
workspace which can be quickly tailored to specific tasks and filtered for design
purposes. This methodology considerably simplifies human manipulability
assessment for both general and task-specific applications and, in contrast to
existing works, is suitable for real-time and/or resource-limited applications.

Numerical evidence shows the proposed human manipulability analysis largely
outperforms previous results in terms of computing time and even in finding
optimal configurations. The developments draw upon existing musculoskeletal
modeling and ergonomic postural analysis through RULA, and respond to key
trends in human-centred robotics.

Rapid Human Manipulability Assessment
(RHuMAn)

RHuMAn (Rapid Human-Manipulability Assessment): is a tool for collaborative AI
applications that allows computation of a human comfort quality index distribution
in the workspace. RHuMAn draws upon extensive offline analysis of human
biomechanics capabilities with ergonomics assessment from industrial-standard
directives to produce an efficient online comfort-quality assessment that can be
quickly tailored to specific tasks and purposes.

For further details on the methods, readers are referred to the attached ArXiv paper
that comes with this software.

The aims of RHuMAn is to provide an easy-to-use platform to analyze human
kinematics and geometric aspects combining them with ergonomics and
musculoskeletal assessement associated with different posture and tasks. The main
goal is to facilitate the analysis of elaborate algorithms that combines knowledge
from biomechanics, extensive experimental data, and optimization techniques into
one single framework. For instance, to analyze muscular-activity, one needs to be
familiar with biomechanics software, e.g., Opensim, and adapt models using its API
or GUI (only available for windows) to be used in different applications (e.g., using
in robotics requires for someone to design the D-H parameters of the Opensim
model (which is not trivial) into a robotics kinematics tool). These software are
computationally heavy and hard to combine with different human metric analysis
(e.g., ergonomic concepts like RULA). RHuMAn simplifies biomechanics and
ergonomics analysis making it straightforward for user from different backgrounds.

RHuMAn brings an easy-to-use toolbox combined with a database of biological
parameters extracted from OpenSim and a tool that enables one to extract different
parameters (for different model and anthropometry features). A typical usage of
RHuMAn is to analyze motion performance and to design physical human-robot
collaborative planners that take human-informed features into account.

Finally, an implicit objective of RHuMAn is to introduce musculoskeletal
model-based methods to practical applications since despite recent advances, these
methods have not been tested in industry—in constrast to ergonomics—hence,
there are still resistance in its use regardless the advantages. In this sense, a
solution that combines both strategies may lead the way of muscular-informed
methods to real-world industrial and pHRC domains, e.g., a factory may replace
their assessment from fully ergonomic-based (e..g, RULA) to one that increasingly
relies on muscular-activity as designer acquires confidence on musculoskeletal
model-based methods.

rHuManModel

RapidHuman-Manipulability Assessment (RHuMAn)

rHuManModel

RapidHuman-Manipulability Assessment (RHuMAn)
CLASS Definition for rHuManModel

Description

rHumanModel is an object with
Kinematics according to Saul et al.1

combined with the DQ_Robotics toolbox
to the computation of the serial chain
kinematics according to the Figure in
right.

Note the world-frame used in
rHumanModel is Z-up with X being
sideways (positive from right shoulder
out) and Y facing the front of the person.
For the hand (wrist-frame), Z is the axis from wrist to raised fingers (base of the fingers),
X depicts the palm down, and Y the axis formed from the thumbs up.

Output

RHuMAn object with variables and methods (see below).

Inputs [optional]

All following inputs are optional and follow the struct: “input”,data

------------[Kinematics based inputs]

● 'dq_shoulderBase',double(8,1):
◆ (DQ-pose) indicating the pose of the shoulder wrt the world in unit dual-quaternions [default: [1;zeros(7,1)]]

1 Saul et al., "Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model
Benchmarkig", CMBBE, (2015).

https://dqrobotics.github.io/

● 'shoulderHeight',double:
◆ (height) indicating the position of shoulder wrt the world (in the z-axis). It will be overturned by the option shoulderBase

[default: 0]

● 'upperArm',double:
◆ (length) of the upper-arm limb. [default: 0.302]

● 'foreArm',double: (length) of the fore-arm limb. [default: 0.2795]

● 'hand',double: (length) to the center of the hand (where forces will be applied/exerted).[default: 0.05]

● 'jointlimits',double(7,2): (joints) block matrix formed by [joints_min joints_max]

● 'joint_lowerlimits',double(7,1): (joints) vector of minimum joint limits. It will be overturned by the option jointlimits
◆ [default: [-90 0 -80 0 -90 0 -60]'*(pi/180)]

● 'joint_upperlimits',double(7,1): (joints) vector of maximum joint limits. It will be overturned by the option jointlimits
◆ [default: [130 180 +40 130 +90 +25 +60]'*(pi/180)]

------------[Human collision assessment]

● 'humanbox',double(3,2): (range) block matrix building a 3D box for the body [xmin xmax; ymin ymax; zmin zmax] -
[default [-0.3145 -0.0355; -0.065 0.065; -0.60 0.025]]

● 'humanheadCenter',double(3,1): (position) vector [x;y;z] with center position for the head [default: [-0.20; 0; 0.15]]

● 'humanheadRadius',double: (length) radius for the head (depicted as a 3D ball) [default: 0.14]

------------[Extra]
● 'verbose',logical: Print all points and steps

Examples - Constructor

newhumanmodel = rHuManModel();
newhumanmodel = rHuManModel('verbose',true);
newhumanmodel = rHuManModel('dq_shoulderBase',[1 zeros(1,7)]);
newhumanmodel = rHuManModel('verbose',true,'upperArm',0.35);
newhumanmodel = rHuManModel('verbose',true,'upperArm',0.35,'foreArm',0.30);
newhumanmodel = rHuManModel('hand',0);
newhumanmodel = rHuManModel('shoulderHeight',1.35,'humanheadCenter',[-0.2 0 1.50],'humanbox',[-0.35 0; -0.05 0.05; 0.75 1.3750])
newhumanmodel = rHuManModel('humanbox',[-0.3145 -0.0355; -0.065 0.065; -0.60 0.025],'humanheadRadius',0.15);
newhumanmodel = rHuManModel('joint_lowerlimits',zeros(7,1),'joint_upperlimits',ones(7,1));

Variables

kine DQ_kinematics representation for the arm (need external package)

kineconfig Struct with configurations for the object

hand2tool Additional transformation from hand to tool (in unit dual quaternions)

pointsInArm Array of cell with positions along the arm (for collision detection)

Methods

getFKM
poseout = getFKM(theta)
=> returns the Forward Kinematics for a given joint config theta

getIK
jointout = getIK(pose);
=> Returns the Inverse Kinematics for a given pose (in unit dual quaternions w DQ_kinematics package)
getIK(pose); => pose => class(DQ) OR OR P=double(7,1) for pose [orientation; position]
getIK(position); => position => double(3,1) for position-only [x;y;z]
getIK(orientation); => orientation => double(4,1) fororientation-only (quaternion: [a;b;c;d]= a + bi + cj + dk)
[jointout, output] = getIK(.); => output is the result from IK Optimization (multistart SQP)

getPos
position = getPos(theta) => returns the position [x;y;z] from FKM for a given joint config theta

getOrientation
orientation=getOrientation(theta) => returns the orientation (quaternion [a;b;c;d]= a + bi + cj + dk) from
FKM for a given joint config theta

getJacobGeom
geomJ = getJacobGeom(theta); => Returns geometric Jacobian (at joint configuration theta)

checkSelfCollision
boolcollision = checkSelfCollision(theta) => Check for collision (returns true if collision is detected) and
updates the pointsInArm (at joint configuration theta)

getSelfCollisionPenalties
penalties = getSelfCollisionPenalties(theta); => Compute penalties (internally calls checkSelfCollision)

from (0 = collision) to (1 = no penalty).

= getSelfCollisionPenalties(theta,forces); => [Optional:forces] Adds forces (6xn) array of n-wrenches in task-space

getRandGaussianJoints
randnjoints = getRandGaussianJoints(); => Returns a 7-joint vector with random (Gaussian) with mean: joint-mean (between
limits) and std (from joint-range) (within joint limits).

= getRandGaussianJoints('seed',seedopt); => Defines the seed for the random generator (e.g.,
getRandGaussianJoints('seed','shuffle')) [default: shuffle]

getRandJoints
randjoints = getRandJoints(); => Returns a 7-joint vector with random (Uniform) values (within joint limits).

= getRandJoints(logvec); => [Optional:logvec] => logical(7,1) where 0 implies joint=mean(between limits) and 1 implies
rand values.

= getRandJoints('seed',seedopt); => [Optional:2args] Defines the seed for the random generator (e.g.,
getRandGaussianJoints('seed','shuffle')) [default: shuffle]

= getRandJoints('length',N); => [Optional:2args] Using 'length' followed by N where N is the length for output random
values, i.e., randjoints double(7,N)

Change log

[2020-06-01]%%=> rHuManModel.m created
[2020-06-29]%%=> class rHuManModel vs(0.3.0) published

rHuManModel / getFKM

return pose in dual quaternion (forward kinematics)
Compute forward kinematics from joints

Inputs

joints - double(7,1)

Outputs

pose - class DQ with orientation and position (in unit dual quaternions)

Usage

%Computing FKM (return class DQ)

pose = getFKM(joints)

rHuManModel / getIK

return joint configuration (inverse kinematics)
Compute inverse kinematics from pose (or position)

Inputs

pose - DQ (class DQ included in this package - from DQrobotics package)

OR pose - Double (7,1) - for [quaternion;position] = [[a;b;c;d]; x;y;z]

OR orientation - Double (4,1) - for quaternion only [a;b;c;d]= a + bi + cj + dk

OR position - Double (3,1) - [x;y;z] (for position only)

Outputs

● joints - double(7,1) of joints
● output - optimization output (multistart sqp)

Usage

% Example (orientation and position)
% Building pose (Example)
phi=pi/2;
position = [0.25; 0; 0.25];
% Defining rotation quaternion
pose = DQ([cos(phi) sin(phi) 0 0]);
% Defining position quaternion
pose = pose + DQ.E*(0.5)*DQ([0;position]);

% Finding IK
q = getIK(pose)
[q, output] = getIK(pose)

% Example (only position (any orientation))
% Finding IK
position = [0.25; 0; 0.25];
q = getIK([0; position])
[q, output] = getIK([0; position])

rHuManModel / getPos

return position [x;y;z] from forward kinematics
Compute position forward kinematics from joints

Inputs

joints - double(7,1)

Outputs

position - double(3,1) with position

Usage

%Computing FKM (return [x;y;z])
position = getPos(joints)

rHuManModel / getOrientation

return orientation (quaternion [a;b;c;d]= a + bi + cj + dk) from forward kinematics
Compute orientation forward kinematics from joints

Inputs

joints - double(7,1)

Outputs

orientation - double(4,1) with orientation in quaternion [a;b;c;d]= a + bi + cj + dk

Usage

% Computing FKM (return quaternion [a;b;c;d]= a + bi + cj + dk)
rot = getOrientation(joints)

rHuManModel / getJacobGeom

return geometric Jacobian
Compute geometric Jacobian from joint inputs

Inputs

joints - double(7,1)

Outputs

geometric jacobian (6,7) matrix

Usage

J = getJacobGeom(theta)

rHuManModel / checkSelfCollision

update points in the arm (for collision detection)
Divides the arm cylinders in different balls and check distance to balls
if it respects a given radius then there is no collision

Inputs

joints - double(7,1)

Outputs

% Returns 1 if collision is detected.

Usage

[collisiondetected] = checkSelfCollision(theta7)

rHuManModel / getSelfCollisionPenalties

get self collision penalties
Compute penalties (internally calls checkSelfCollision)
Read referenced paper for further details on details of how it works

Inputs

theta - double(7,1) with joint values
[Optional:forces] - Adds forces (6xn) array of n-wrenches in task-space

Outputs

penaltOut - Returns penalty value (for single input or single force)
- Returns penalty vector for multiple-forces (1 for each)
- Returns 0 or (vector of zeros) if self-collision is detected.

rHuManModel / getRandJoints

Returns a 7-joint vector with uniformly random values (within joint limits).
Get random joints (uniform distribution within joint limits).

Inputs - Optional

[logical(7,1)] - where 0 implies joint=mean(between limits) and 1 implies rand values.

['seed',seedopt] - Defines the seed for the random generator (e.g.,
getRandGaussianJoints('seed','shuffle')) [default: shuffle]

After use it returns to previous rng.

['length',N] - Using 'length' followed by N where N is the length for output random values,
i.e., randjoints double(7,N)

Outputs

joints - double(7,1)
OR
double(7,N) if ['length',N] is used.

Usage

joints = getRandJoints(joints)
= getRandJoints(joints, [0; 0; 0; 0; 1; 1; 1]) %only wrist random with

joint-mean(between limits) in shoulder and elbow-flexion joints
= getRandJoints('seed','default'); => Initializes Mersenne Twister generator with seed 0.

This is the default setting at the start of each MATLAB session.
= getRandJoints('length',1000); => Returns 1000 random joints double(7,1000).
= getRandJoints([0; 0; 0; 0; 1; 1; 1],'length',1000); => Returns 1000 random joints

double(7,1000) where only the last 3-joints are random..

rHuManModel / getRandGaussianJoints

Returns a 7-joint vector with random (Gaussian) values (within joint limits).
Get random joints (normal distribution with mean in joint-mean (between limits) and std

(from joint-range) that satisfies the joint limits.

Outputs

joints - double(7,1)

rHuManManipulability
Rapid-Human-Manipulability Assessment (RHuMAn)

rHuManManipulability

RapidHuman-Manipulability Assessment (rHuMAn)
CLASS Definition for rHuManManipulability

Description

rHuManManipulability is an object with the tools and methods described in the
comfortability analysis paper attached to this software. The aim is to provide
muscular-informed analysis and ergonomics analysis in an unified framework and to
combine both metrics into a comfortability dataset into a comfortability distribution
(through a voxalized analysis of the dataset) or task-comfortability (TS-comfortability)
dataset or TS-comfortability distribution.

The solution is build over a human model described using the class rHuManModel
(which takes Kinematics according to Saul et al.2 combined with the DQ_Robotics
toolbox to the computation of the serial chain kinematics), an ergonomics analysis
based on rapid upper-limb assessment (RULA),3 common to industrial applications, and
a muscular-informed analysis using Saul et al model combined with Opensim tool for
analysis. This software also allows precomputed human biomechanics parameters to be
obtained offline through Opensim and stored for independent software analysis.

Note the world-frame used in rHumanModel is Z-up with X being sideways (positive from right shoulder
out) and Y facing the front of the person.
For the hand (wrist-frame), Z is the axis from wrist to raised fingers (base of the fingers), X depicts the
palm down, and Y the axis formed from the thumbs up.

2 Saul et al., "Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model
Benchmarkig", CMBBE, (2015).

3 M. Lynn and N. Corlett,“RULA: A survey method for the investigation of work-related upper limb disorders,”Applied Ergonomics, vol. 24,
no. 2, pp. 91–99, 1993

https://dqrobotics.github.io/
https://dqrobotics.github.io/

Figure: Outline for human manipulability assessment according to rHuManManipulability. In the top left figure, the
Ergonomics comfortability is computed (with an example of a purely ergonomics manipulabilty) while in the bottom left
describe the muscular-informed manipulability (MiM) analysis with one example of a purely MiM distribution. In the right,
we show how both manipulabilities can be used to build a precomputed dataset (voxalized or not) and that can be used to
build a combined comfortability distribution or applied to task-specific application.

Output

rHuManManipulability object with RapidHuman-Manipulability Assessment

Constructor Inputs

● humanModel from the class rHuManModel

All following inputs are optional and follow the struct: “input”,data

● opensim',logical
◆ [NOT-AVAILABLE IN THIS VERSION] Assessment using opensim connection directly from matlab.

● 'localdata',char:
◆ DIR (absolute or relative) with relative or absolute path for dataset containing

muscleMaxForce.mat and fct_getmuscleActivation.m functions (available within
software)

Examples - Constructor

comfManip = rHuManManipulability(rhuman,'localdata','./OpenSimData')
comfManip = rHuManModel(rhuman,'localdata','./OpenSimData','verbose', true)

Variables

● rhuman humanModel from the class rHuManModel
● datasetSize Number (N) of inputs in the dataset
● joints double(7,N) of N joint positions. For the human model see classdef rHuManModel
● pos double(3,N) of N task-space positions for the user hand
● rot double(4,N) of N task-space orientation (quaternion) for the user hand
● ergoManip double(1,N) of ergonomics manipulability (based on RULA or REBA scores)
● muscInfoManip double(F,N) of N muscular-informed manipulability (MiM) where) F=1 for general MiM and

F = number of wrenches(force/torques)/accelerations for the augmented MiM (default: 58)
● penalty_selfCol double (F,N) of self-collision penalty values for each N entry and

F force/acceleration directions. Penalties defined at classdef rHuManModel
● comfortIndex Resulting comfort index (only available when calling reshape functions)

Both muscInfoManip and penalty_selfCol size will be updated according to calls to buildComfortability or
buildAugmentedComfortability functions among other functions

● voxConfig Voxalized data configuration (Cartesian distance (5cm default], rotationDivisions [10 default],
maxMuscle-Transm Rate and MaxMuscle-Inform-Manip. to be defined)

● configDataset Configuration for curr. dataset (includes forces and if they are defined in wrist or task-space)
● verbose Default: false;

Methods

build_AugmentedComfortDataset
[dataset] = build_AugmentedComfortDataset(N, [options]);

=> Builds the comfortability data-struct with N entries. N>100.
Stores data-struct in object-class and returns data-struct (optionally)

=> Additionally: accepts the same inputs from (setForces4Manipulability)
and 'default' to use the set of default forces (58)

build_TSComfortability
[dataset] = build_TSComfortability(N, force, kMuscle, [options])

=> Builds the task-specific comfortability manipulability distribution with N entries. N>100.
Stores data-struct in object-class and returns data-struct (optionally)
'force' is the task-specific force (or acceleration) direction.
'kMuscle' is the gain between [0,1] to weight muscular (1) and ergonomics (0)
=> Optional: 'wrist',logical : If forces/torques are defined in the end-effector (not in DEFAULT:

task-space). Default=false.

compute_gainMuscle
[gain_Muscle] = compute_gainMuscle(Speed,Intensity,Repetitive)

=> Compute muscular-gain for comfortability. Ranges from [1]: only muscle to [0] only ergonomics

=> Inputs: Speed - Ranges between [0,1] (for very slow to very fast task executions)
Intensity- Intensity ranging between expected minimum and maximum task-space forces [0,1]
Repetitive - Repetitive has 3 modes: 0 (unique task, 0.5: repetes from time to time, 1 very

repetitive (more than 4x per minute).

get_ComfortCost
[comfortCost, MuscleTransRate, RULA, penalties] = get_ComfortCost(joints, forcevector, kMuscle, maxTransRate,
options)

=> Function compute comfort cost from both ergonomics and muscular (according to KMuscle).
Ranges from [0 -> 1] (from uncomfortable => max. comfortable)
MuscleTransRate (normalized). RULA score (least the better).
Returns -1 if self-collision is detected (and if self-collision detected is enabled [default])

Input: Joints (double7,1); forcevector (either double(6,N) ou double(3,N);
kMuscle: Gain between [0,1] to weight muscular (1) and ergonomics (0)
maxTransRate: Max Transmission Rate (vector) per force analyzed.

IF NOT DEFINED: Algorithm will search for an approximate value (increasing time)
[Optional:Inputs]: 'wrist',logical

If forces/torques are defined in the end-effector (not in DEFAULT: task-space). Default=false.
'selfCollision',logical : Default: True : Add selfCollision penalties to the final cost.

get_muscularCost
[muscleActEffort, MuscleTransRate, musclesAct, penalties] = get_muscularCost(joints, forcevector, options)

=> Returns: muscular-activity effort
=> denotes the sqrt(alpha^T*alpha) where alpha = muscle-activity vector)

muscular-transmission-rate => 1/max(alpha)
muscle-act-vector => alpha = double (50,1) with muscle-activity values
penalties => Self-collision penalties vector (for each force)

Input: Joints (double7,1); forcevector (either double(6,N) ou double(3,N);
[Optional:Inputs]: 'wrist',logical : If forces/torques are defined in the end-effector (not in

DEFAULT: task-space). Default=false.

get_RULA
RULA = get_RULA(joints); Returns RULA score4

RULA = get_RULA(joints, 'shoulderRaised',true)
=> [optional: Extra pontuation for RULA (if shoulder is raised), see referenced paper for further details

= get_RULA(joints, 'shoulderPos',[0.10 0 1.3])
=> [optional: Extra pontuation for RULA (pos of shoulder to check if it is raised)]

= get_RULA(joints, 'armSupported', true)
=> [optional: Extra pontuation for RULA (if arm is supported), see referenced paper for further details]

= get_RULA(joints, 'repetitive', true)
=> [optional: Extra pontuation for RULA (if task is repetitive), see referenced paper for further details]

4 RULA score computed according to McAtamney, L., & Hignett, S. (2004). Rapid Entire Body Assessment. Handbook of Human Factors and
Ergonomics Methods, 31, 8-1-8–11. https://doi.org/10.1201/9780203489925.ch8

https://doi.org/10.1201/9780203489925.ch8

= fget_RULA(joints, 'heldstatic', true)
=> [optional: Extra pontuation for RULA (if task is held for long), see referenced paper for further details]

= get_RULA(joints, 'abrupt', true)
=> [optional: Extra pontuation for RULA (if task is abrupt), see referenced paper for further details]

= get_RULA(joints, 'heavyload', true)
=> [optional: Extra pontuation for RULA (if task involves heavy load (e.g., tool is heavy)), see referenced paper for

further details]

get_TSComfortDataset
database = get_TSComfortDataset(force, options)

=> Function outputs a task-specific comfortability dataset from augmented
data-struct with muscular and ergonomics data

=> 'force' is the task-specific force (or acceleration) direction.
=> [Optional:Input]: 'wrist',logical : If force/torque is defined in

the end-effector (not in DEFAULT: task-space). Default=false.
=> [Optional:Input]: 'external',augmentedDataStruct : Explores an

external datastruct instead of the one in the object itself [default].
External datastruct must contain fields:

{size,joints,pos,rot,ergoManip,muscInfoManip,penalty_selfCol,configDataset}

handleRula2ErgoIndex
ergoIndex = handleRula2ErgoIndex(RULA)

=> Transform RULA to Ergonomic Index (normalized values)

handleErgoIndex2RULA
RULA = handleErgoIndex2RULA(ergoIndex) => Transform Ergonomic Index to RULA

plot_comfortability
plot_comfortability(comfDataDist,options) => plots a human model and scatter plot showing comfort values.

reshape_Comfortability
comfDist = reshape_Comfortability(kMuscle, options)

Function reshapes (and outputs) a general comfortability distribution from exsiting augmented data-struct with
muscular and ergonomics data

=> KMuscle: Gain between [0,1] to weight muscular (1) and ergonomics (0)
comfortability integrates muscular data and Ergonomics according KMuscle.

=> [Optional:Input]: 'external',augmentedDataStruct : Explores an external datastruct instead of the one
in the object itself [default].

External datastruct must contain fields: {size,joints,pos,rot,ergoManip,muscInfoManip,penalty_selfCol}

reshape_TSComfortability
comfDist = reshape_Comfortability(force, kMuscle, options)

Function reshapes (and outputs) a task-specific comfortability distribution from exsiting augmented data-struct
with muscular and ergonomics data

=> 'force' is the task-specific force (or acceleration) direction.
=> [Optional:Inputs]: 'wrist',logical

: If force/torque is defined in the end-effector (not in DEFAULT: task-space). Default=false.
=> Other inputs follow the same from (reshape_Comfortability)

setForces4Manipulability
setForces4Manipulability()

=> Updates configuration forces to be used on comfortability data-struct construction. (default 58 wrenches).
setForces4Manipulability('length')

=> defines size of force-vector (if below 52, all wrenches above 6 will be make random). Min: 6 (if below, use specific
'forces','torques','wrenches' entries).

setForces4Manipulability('forces',forcevec)
=> [forcevec:double(3,N)] -> defines set of N forces for augmented manipulability assessment (This makes entry 'lenght' void)

setForces4Manipulability('torques',torquevec)
=> [torquevec:double(3,N)] -> defines set of N torques for augmented manipulability assessment (This makes entry 'lenght' void)

setForces4Manipulability('forces',forcevec, 'torques',torquevec)
=> Defines both force and torques for assessment.

setForces4Manipulability('wrenches',wrenchvec)
=> [wrenchvec:double(6,N)] -> defines set of N wrenches=[torque;force] for augmented manipulability assessment (This makes

previous entries void)

setForces4Manipulability('wrist',true)
=> Defines reference frame of the forces to be in-hand (DEFAULT: false which implies forces defined in task-space)
Alternative names: 'wristframe','end','endeffector'. Can be combined with previous entries (e.g.,
setForces4Manipulability('endeffector',true,'forces',forcevec)

rHuManManipulability / build_AugmentedComfortDataset

Build a Comfortability Dataset with Muscular-Informed Manip and Ergonomics

Inputs

datasize (double) : defines size of the datastruct (minimum is 100)

Inputs [Optional]

● 'default' : When adding the string 'default', forces will be set for default mode in (58 forces)

------------------------[Optional: INPUTs]:[Format: String followed by values]
● 'forces',double(3,N) : defines set of N forces for augmented manipulability assessment (This makes entry
'lenght' void)

● 'torques',double(3,N) : defines set of N torques for augmented manipulability assessment (This makes entry
'lenght' void)

● 'wrenches',double(6,N) : defines set of N wrenches [torque;force] for augmented manipulability assessment
(This makes entries 'lenght','forces','torques' void)

● 'wrist',logical : If forces/torques are defined in the end-effector (DEFAULT: task-space). Default=false.
● 'wristframe',logical : same as above. Default=false.
● 'end',logical : same as above. Default=false.

● 'endeffector',logical : same as above. Default=false.

Outputs

[Optional: datastruct] returns the a datastruct with joints, pos, rot, ergonomics, muscular-informed manip,
and penalties for human workspace.
Method also updates variables within the object (thus, no need to safe output if it is not going to be used)

Usage

build_AugmentedComfortDataset(600000);
build_AugmentedComfortDataset(300000,'forces',randn(3,30),'torques',randn(3,10));
build_AugmentedComfortDataset(600000,'wrenches',randn(6,30));
build_AugmentedComfortDataset(1200000,'forces',randn(3,6),'wrist');

rHuManManipulability / build_TSComfortability

Build a Task-Specific Comfortability Dataset with Muscular-Informed Manip and Ergonomics
It builds the task-specific comfortability manipulability distribution.

See referenced paper for further details

Inputs

datasize (double) : defines size of the datastruct (minimum is 100)
force (double(6,1) OR double(3,1)) : Defines the task-specific force for analysis.

It accepts a Double(6,1) - for a wrench [torque;force]
OR Double(3,1) - for a wrench [0;force] with only a force.

kMuscle (double) : Gain between [0,1] to weight muscular (1) and ergonomics (0)
Example 0.5 (equal weights), while 1 implies only
muscular-assessment [Default = 0.5]

Inputs [Optional]

------------------------[Optional: INPUTs]:[Format: String followed by values]
● 'wrist',logical : If forces/torques are defined in the end-effector (DEFAULT: task-space). Default=false.
● 'wristframe',logical : same as above. Default=false.
● 'end',logical : same as above. Default=false.

● 'endeffector',logical : same as above. Default=false.

Outputs

[Optional: datastruct] returns the a datastruct with joints, pos, rot, ergonomics, muscular-informed manip,
and penalties for human workspace.
Method also updates variables within the object (thus, no need to safe output if it is not going to be used)

Usage

build_TSComfortability(300000,randn(6,1));
build_TSComfortability(600000,randn(3,1));
build_TSComfortability(600000,randn(3,1),'wrist');

rHuManManipulability / compute_gainMuscle

returns gain for comfortability (ranging from [1]: only muscle to [0] only ergonomics)
Compute gains for computing comfortability.
Returns gain for muscle (assuming gain for ergonomics is convex (1-gain_muscle)
Ranges from [1]: only muscle to [0] only ergonomics

Inputs

1. Speed - Ranges between [0,1] (for very slow to very fast task executions)

2. Intensity - Intensity ranging between expected minimum and maximum task-space forces [0,1]

3. Repetitive - Repetitive has 3 modes: 0 (unique task, 0.5: repetes from time to time, 1 very repetitive
(more than 4x per minute).

Outputs

gain_Muscle - Gain for muscle (assuming gain for ergonomics is convex (1-gain_muscle)
Ranges from [1]: only muscle to [0] only ergonomics

Usage

gain_Muscle = compute_costs(0.5, 0.75, 0)
gain_Muscle = compute_costs(0.65, 0.25, 1)

rHuManManipulability / get_ComfortCost

Retrieves comfortCost (and: [comfortCost, MuscleTransRate, RULA, penalties])
This function returns the combined ergonomics (RULA) and muscular assessment

* Muscular assessment from the kinematics & biomechanics (see Saul et al.5)
* RULA/REBA points are computed according to RULA6

Note that z:height, x:sideways (right shoulder out), y:face-front
for the hand: z:out of fingers, x:palm down, y:thumbs up

Inputs

joints (joints): A 7x1 double with joint values in rad (according to Saul's model)
Default joints limits (can be changed):
Joint limits (lower): [-90 0 -90 0 -90 -15 -75]'*(pi/180)
Joint limits (upper): [130 180 +45 145 +90 +25 +75]'*(pi/180)

forcevector (double 6,N) with N >= 1
Defines the unique force or a set of forces to be analyzed.
If N>1 (multiple-forces), then the output is also a [vector, vector, matrix]

(double 3,N) : similar but with wrench defined by: [0;forcevector]

kMuscle (double) : Gain between [0,1] to weight muscular (1) and ergonomics (0)
Example 0.5 (equal weights), while 1 implies only muscular-assessment

Inputs [Optional]

● maxTransRate (double(N): Maximum Transmission Rate per force analyzed
(if N=1, the same value will be applied to all forces

IF NOT DEFINED: Algorithm will search for an approximate value (increasing time)

------------------------[Optional: INPUTs]:[Format: String followed by values]
● 'wrist',logical : If forces/torques are defined in the end-effector (DEFAULT: task-space). Default=false.
● 'wristframe',logical : same as above. Default=false.
● 'end',logical : same as above. Default=false.

5 Saul et al., "Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal
model Benchmarkin…", CMBBE, (2015).

6 McAtamney, L., & Hignett, S. (2004). Rapid Entire Body Assessment. Handbook of Human Factors and Ergonomics Methods, 31, 8-1-8–11.
https://doi.org/10.1201/9780203489925.ch8

https://doi.org/10.1201/9780203489925.ch8

● 'endeffector',logical : same as above. Default=false.

● 'selfCollision',logical : Default: True : Add selfCollision penalties to the final cost.

Outputs

[comfortCost, muscular-transmission-rate, RULA_value]

comfortCost : ranges from [0 -> 1] (from uncomfortable => max. comfortable)
Values will vary according to gain kappa (input)

muscular-transmission-rate : 1/max(alpha) where alpha = muscle-activity vector
RULA: RULA/REBA points. Returns error when 0.

Usage

[comfortCost, MuscleTransRate, RULA, penalties] = get_ComfortCost(joints, force, 1.0)
[comfortCost, MuscleTransRate, RULA, penalties] = get_ComfortCost(joints, force_vec, 0.5, 'wrist',true)
[comfortCost, MuscleTransRate, RULA, penalties] = get_ComfortCost(joints, force_vec, 0.5, 250)
[comfortCost, MuscleTransRate, RULA, penalties] = get_ComfortCost(joints, force_vec, 0.5, 'selfCollision',false)

rHuManManipulability / get_muscularCost

Retrieves Muscular-Cost : [muscleActEffort, MuscleTransRate, musclesAct-vec, penalties]
This function returns muscular assessment from the kinematics & biomechanics.

* Muscular assessment from the kinematics & biomechanics (see Saul et al.)

Note that z:height, x:sideways (right shoulder out), y:face-front
for the hand: z:out of fingers, x:palm down, y:thumbs up

Inputs

joints (joints): A 7x1 double with joint values in rad (according to Saul's model)
forcevector (double 6,N) with N >= 1

Defines the unique force or a set of forces to be analyzed.
If N>1 (multiple-forces), then the output is also a [vector, vector, matrix]

Inputs [Optional]

------------------------[Optional: INPUTs]:[Format: String followed by values]
● 'wrist',logical : If forces/torques are defined in the end-effector (DEFAULT: task-space). Default=false.
● 'wristframe',logical : same as above. Default=false.
● 'end',logical : same as above. Default=false.

● 'endeffector',logical : same as above. Default=false.

Outputs

muscular-activity effort : ranges from [0 ->no effort to sqrt(ones(50,1)'*ones(50,1))]
denotes the sqrt(alpha^T*alpha) where alpha = muscle-activity vector

muscular-transmission-rate : 1/max(alpha)
muscle-act-vector : double (50,1) with muscle-activity values
penalties : self-collision penalties vector (for each force)

Usage

[muscleActEffort, MuscleTransRate, musclesAct, penalties] = get_muscularCost(joints, force)
[muscleActEffort, MuscleTransRate, musclesAct, penalties] = get_muscularCost(joints, force_vec, 'wrist',true)

rHuManManipulability / get_RULA

Retrieves RULA / REBA Scores
This function returns RULA (or REBA) assessment (points) taking the kinematics from

(fctLoadHuman_opensim_simplified) according to Saul et al. RULA points are computed
according to McAtamney, L., & Hignett, S. (2004). Rapid Entire Body Assessment. Handbook of Human Factors and Ergonomics

Methods, 31, 8-1-8–11. https://doi.org/10.1201/9780203489925.ch8

Note that z:height, x:sideways (right shoulder out), y:face-front
for the hand: z:out of fingers, x:palm down, y:thumbs up

Inputs

joints (joints): A 7x1 double with joint values in rad (according to Saul's model)

Inputs [Optional]

------------------------[Optional: INPUTs]:[Format: String followed by values]
● 'shoulderRaised',boolean : If Shoulder is raised
● 'armSupported',boolean : If arm is supported
● 'shoulderPos',vec3 : Used to check if shoulder is raised (together with shoulderBase)

------------------------[Activities score]
● 'repetitive',boolean : [Default: false] Extra pontuation for RULA (if task is repetitive), see referenced paper

for further details
● 'heldstatic',boolean : [Default: false] Extra pontuation for RULA (if task is held for long)
● 'abrupt',boolean : [Default: false] Extra pontuation for RULA (if task is abrupt)
● 'heavyload',boolean : [Default: false] Extra pontuation for RULA (if task involves heavy load (e.g., tool is

heavy))

[deprecated] * 'shoulderBase',vec3 : Used to check if shoulder is raised
[deprecated] * 'handCrossLine',boolean : If working across midline of the body (chest)
[deprecated] * 'handOutSideBody',boolean : If arm out to side of body (check wrt to elbow)
[deprecated] * 'elbowPos',vec3 : Used to check if wrist is crossing or outside body (together with wristPos and
shoulderPos(OR)shoulderBase)
[deprecated] * 'wristPos',vec3 : Used to check if wrist is crossing or outside body (together with elbowPos and
shoulderPos(OR)shoulderBase)

[deprecated] * 'kine',DQ_kinematics : Passing the DQ_Kinematics of the human upper limb allow the function to compute (1) the
shoulderBase; (2) elbowPos; and (3) wristPos which in turn allow the function to compute (a) if shoulderRaised (with shoulderPos); (b) if
handCrossLine or handOutSideBody

[deprecated] * 'verbose',boolean : Print all points and steps

https://doi.org/10.1201/9780203489925.ch8

Outputs

RULA: RULA points (Results between 1-13 ==> Best=1, Worst=13). Returns error when 0.

Usage

RULA_SCORE = fct_get_RULA(joints)
RULA_SCORE = fct_get_RULA(joints, 'shoulderRaised',true)
RULA_SCORE = fct_get_RULA(joints, 'shoulderPos',[0.10 0 1.3], 'armSupported', true)

[deprecated] * fct_get_RULA(joints, 'handOutSideBody',true, 'shoulderBase',[0 0 1.350],'shoulderPos',[0 0 1.375]) % which is true for
shoulderRaised
[deprecated] * fct_get_RULA(joints, 'elbowPos',[0.15 0 0],'wristPos',[0.16 0 0]) % which is true for
handOutSideBody
[deprecated] * fct_get_RULA(joints, 'wristPos',[-0.30 0.10 1.3], 'shoulderPos',[-0.09 0 1.3]) % which is true for handCrossLine
[deprecated] * fct_get_RULA(joints, 'kine',humankine, 'shoulderPos',[0.10 0 1.3]) % Using the DQ_kinematics variable to compute

% (1) the shoulderBase; (2) elbowPos; and (3) wristPos

rHuManManipulability / get_TSComfortDataset

Returns a Task-Specific Comfortability database from an Augmented comfortability
dataset. It builds the Task-Specific comfortability datastruct from an existing augmented
data-struct with muscular and ergonomics data (those are not to be updated).

See referenced paper for further details

Inputs

forcevector (double 6,1) or (double(3,1)
Defines the task-specific force for analysis.

It accepts a Double(6,1) - for a wrench [torque;force]
OR Double(3,1) - for a wrench [0;force] with only a force.

Inputs [Optional]

------------------------[Optional: INPUTs]:[Format: String followed by values]
'external',datastruct : Explores an external datastruct instead of the one in the object itself. [default]

External datastruct must contain:
{datasetSize,joints,pos,rot,ergoManip,muscInfoManip,penalty_selfCol}

● 'wrist',logical : If forces/torques are defined in the end-effector (DEFAULT: task-space). Default=false.
● 'wristframe',logical : same as above. Default=false.
● 'end',logical : same as above. Default=false.

● 'endeffector',logical : same as above. Default=false.

Outputs

[Optional: datastruct] returns the a datastruct with joints, pos, rot, ergonomics, muscular-informed manip,
and penalties for human workspace.
Method also updates variables within the object (thus, no need to safe output if it is not going to be used)

Usage

tsDatabase = get_TSComfortDataset(randn(3,1));
Returns a comfortability datastruct from data in the obj (expects prior use of build_AugmentedComfortDataset())

tsDatabase = get_TSComfortDataset(randn(6,1), 'external',extDataset);
Returns a comfortability datastruct from extDataset

tsDatabase = get_TSComfortDataset(force,'wrist',true);
Similar assessment but with force defined in end-effector frame

rHuManManipulability / handleErgoIndex2RULA

return RULA Score from Ergonomic Index. Compute RULA SCORE from Ergonomic Index

Inputs

ergoIndex - double with normalized Ergonomic Index [0,1]

Outputs

RULA SCORE - double (integer)

Usage

RULA = handleErgoIndex2RULA(ergoIndex)

rHuManManipulability / handleRula2ErgoIndex

return Ergonomic cost from RULA Score
Compute Ergonomic Index from RULA SCORE

Inputs

RULA SCORE - double

Outputs

ergoIndex - double with normalized Ergonomic Index [0,1]

Usage

ergoIndex = handleRula2ErgoIndex(RULA)

Inputs

datasize (double) : defines size of the datastruct (minimum is 100)

rHuManManipulability / plot_comfortability

Plots a human model with the comfortability distribution
This method plots a human model and scatter plot showing comfort values.

Inputs

'external',ComfDataDist
Explores an external comfortability distribution. Different from dataset, the structu must have a 'comfortIndex'
External datastruct must contain: {pos, comfortIndex}

Inputs [Optional]

------------------------[Optional: INPUTs]:[Format: String followed by values]
* 'animation',logical : Defines if animation is on/off
* 'animationDelay',double : Animation time (between pauses). If ('animationDelay',0) then, it pauses until
user press a key [Default: 0.1].

* 'savefig',char : If saving figure, please specifiy the address

* 'section',logical : If plot will be presented in transversal sections or full (false=default).
* 'section_num',double : Number os sections (default=5).
* 'section_axis',double : Defines axis for section x=1; y=2; z=3; (default=3).

* 'noModel',logical : False; % Set this to true if you do not wish to plot human model

Outputs

-

Usage

plot_comfortability('animation',true)
plot_comfortability('section',true)
plot_comfortability('noModel',logical)

RHuManManipulability / reshape_Comfortability

Reshape an Augmented Comfortability Dataset into a comfortability distribution
It builds the comfortability general manipulability from an existing augmented data-struct
with muscular and ergonomics data (those are not to be updated).

See referenced paper for further details

Inputs

kMuscle (double) : Gain between [0,1] to weight muscular (1) and ergonomics (0)
Example 0.5 (equal weights), while 1 implies only
muscular-assessment [Default = 0.5]

Inputs [Optional]

------------------------[Optional: INPUTs]:[Format: String followed by values]
'external',datastruct : Explores an external datastruct instead of the one in the object itself. [default]

External datastruct must contain:
{datasetSize,joints,pos,rot,ergoManip,muscInfoManip,penalty_selfCol}

Outputs

datastruct: returns the comfortability distribution datastruct with joints, pos, rot, ergonomics, muscular-informed
manip, and penalties for human workspace.

Usage

comfDistribution = reshape_Comfortability(0.5);
Returns a comfortability distribution datastruct from data in the obj
(expects prior use of build_AugmentedComfortDataset())

comfDistribution = reshape_Comfortability(0.75, 'external',extDataset);
Returns a comfortability distribution datastruct from extDataset

rHuManManipulability / reshape_TSComfortability

Reshape an Augmented Comfortability Dataset into a Task-Specific comfortability
distribution. It builds the Task-Specific comfortability distribution from an existing
augmented data-struct with muscular and ergonomics data (those are not to be updated).

See referenced paper for further details

Inputs

forcevector (double 6,1) or (double(3,1)
Defines the task-specific force for analysis.

It accepts a Double(6,1) - for a wrench [torque;force]
OR Double(3,1) - for a wrench [0;force] with only a force.

kMuscle (double) : Gain between [0,1] to weight muscular (1) and ergonomics (0)
Example 0.5 (equal weights), while 1 implies only
muscular-assessment [Default = 0.5]

Inputs [Optional]

------------------------[Optional: INPUTs]:[Format: String followed by values]
'external',datastruct : Explores an external datastruct instead of the one in the object itself. [default]

External datastruct must contain:
{datasetSize,joints,pos,rot,ergoManip,muscInfoManip,penalty_selfCol}

● 'wrist',logical : If forces/torques are defined in the end-effector (DEFAULT: task-space). Default=false.
● 'wristframe',logical : same as above. Default=false.
● 'end',logical : same as above. Default=false.

● 'endeffector',logical : same as above. Default=false.

Outputs

datastruct: returns the task-specific comfortability distribution datastruct with joints, pos, rot, ergonomics,
muscular-informed manip, and penalties for human workspace.

Usage

tscomfDist = reshape_TSComfortability(randn(3,1),0.5);
Returns a comfortability distribution datastruct from data in the obj
(expects prior use of build_AugmentedComfortDataset())

tscomfDist = reshape_TSComfortability(randn(6,1),0.75, 'external',extDataset);
Returns a comfortability distribution datastruct from extDataset

tscomfDist = reshape_TSComfortability(force,0.5, 'wrist',true);
Similar assessment but with force defined in end-effector frame

rHuManManipulability / setForces4Manipulability

Set ForceVector for Muscular Comfortability Analysis. It updates the set of forces used when
building (augmented) muscular-informed manipulability

Inputs [Optional]

● 'default' : When adding the string 'default', forces will be set for default mode in (58 forces)

------------------------[Optional: INPUTs]:[Format: String followed by values]
● 'length',double : defines size of forces for assessment (if below 52, all wrenches above 6 will be make
random). Min: 6 (if below, use specific 'forces','torques','wrenches' entries)

● 'forces',double(3,N) : defines set of N forces for augmented manipulability assessment (This makes entry
'lenght' void)

● 'torques',double(3,N) : defines set of N torques for augmented manipulability assessment (This makes entry
'lenght' void)

● 'wrenches',double(6,N) : defines set of N wrenches [torque;force] for augmented manipulability assessment
(This makes entries 'lenght','forces','torques' void)

● 'wrist',logical : If forces/torques are defined in the end-effector (DEFAULT: task-space). Default=false.
● 'wristframe',logical : same as above. Default=false.
● 'end',logical : same as above. Default=false.

● 'endeffector',logical : same as above. Default=false.

Outputs

- VOID: Update list for forcevector - class variable

Usage

setForces4Manipulability();
setForces4Manipulability('length',30);
setForces4Manipulability('forces',randn(3,30),'torques',randn(3,10));
setForces4Manipulability('wrenches',randn(6,30));
setForces4Manipulability('forces',randn(3,6),'wrist');

rHuMAn for USERS
The following figure presents a flowchart with the main steps processes for
computing comfortability information via the library.

Figure: Outline for the library structure and how to explore methods and variables available within the rHuMAn
tool. Both OpenSim and DQ_Robotics are libraries dependencies needed to run the software, yet rHuMAn can
also use previously constructed datasets from OpenSim Models. Classes and most relevant methods available in
the tool are depicted in green with connection between methods.

The rHuMAn (Rapid Human-Manipulability Assessment) tool provides the interface
to human kinematics from DQ_Robotics toolbox with relevant functions and
additional features specific for biomechanics analysis. It already embeds the
kinematics model commonly used in biomechanics (model used in OpenSim
Upper-Body model). This kinematics is then fully integrated with human actuation
according to human kinesiology. In other words, the kinematics is integrated with
tools to process muscular forces and activity based on biomechanics parameters
that maps task-space accelerations and forces to muscle-space (e.g., muscle-length,
muscle maximum isometric force, moment-arm between muscle and joints, etc).
These features are extracted from a large database (available within this software)
acquired from opensim experiments. In additional to both kinematics and
biomechanics, rHuMAn also outputs human postural ergonomics. This postural
analysis technique draw a quantitative measure for ergonomics (mostly focused and
applied to industrial workflows) from experiments and evaluation from
experts—ergonomists and physiotherapists among others.

The rHuMAn provides the tools to analyze each feature (kinematics, biomechanics,
and ergonomics) isolated, to create a specific muscle or ergonomics manipulability
datastruct or distribution, to visualize them, and to shape those to task-specific
applications.

Simple Working Example

The following simple working example illustrates on of the main applications of the
rHuMAn AI tool that is to build a workspace comfortability distribution from an
augmented dataset.
To this aim, we first build a human model using rHuManModel, then load an object
for rHuManManipulability assessment. The detailed code with comments is
presented below

Simple	Working	Example	:	rHuMAn	Library

Contents

Constructing	human	model	from	rHuManModel

Constructing	human	Manipulability	Object	from	rHuManManipulability

Building	the	augmented	datastruct

Building	a	General	Comfortability	Distribution

Building	a	Task-Specific	Comfortability	Distribution

Constructing	human	model	from	rHuManModel

First,	we	construct	a	human	model	using	rHuManModel	with	height	(shoulder!)	of	1.35	m.	Enabling	verbose	for	illustration.

rhuman	=	rHuManModel('shoulderHeight',1.35,'verbose',true);

******	Loading	human	model...
***	kinematics:
	 upper-arm:	0.302
	 fore-arm:	0.2795
	 point	of	force	at	hand:	0.05
	 shoulder-base	position	(xyz):	[0											0								1.35]
	 shoulder-base	orientation	(quat):	[1		0		0		0]
***	Body	Geometry	for	self	collision
	 Body	3D-box:	x	\in	[-0.3145					-0.0355],	y	\in	[-0.065							0.065],	z	\in	[0.75							1.375]
	 Head	3D-ball	with	radius:	[0.14]	centered	at	[-0.2											0								0.15]
	 Upper-arm	Cylinder-Radius:	[0.035]	with	[4]	discrete	equally	spaced	points.
	 Fore-arm	Cylinder-Radius:	[0.02]	with	[3]	discrete	equally	spaced	points.
***	Definitions
	 Shoulder	orientation:	(+x)	lateral	towards	right,	(+y)	front,	(+z)	upwards
	 Wrist	orientation:	(+x)	Palm-in,	(+y)	Thumbs-ub,	(+z)	defined	from	wrist	to	fingers

To	visualize	human	model,	display	its	properties.	Note	that	'kine'	depicts	the	human	kinematics,	and	'kineconfig'	the	general	kinematics	and	geometric	configurations	(e.g.,
bounding	box	defining	human	body	and	ball	defining	human	head	that	are	used	for	fast	self-collision	analysis,	and	functions	as	checkJointLim	to	verify	if	a	prescribed	joint	is
over	the	prescrived	limits)

rhuman

rhuman	=	

		rHuManModel	with	properties:

											kine:	[1×1	DQ_kinematics]
					kineconfig:	[1×1	struct]
						hand2tool:	[1×1	DQ]
				pointsInArm:	[]

To	have	a	quick	visualization	method	to	human	upper-limb	(now,	only	avaiable	for	right-handed)	You	can	define	a	joint	configuration.

The	following	is	one	configuration	with	shoulder	elevated	30o	at	90o	angle	(facing	in	front	of	the	person)	with	40o	of	elbow	flexion.	You	can	also	print	in	the	screen	its	position
and	orientation	(quaternion)

theta	=	[90;	30;	0;	40;			0;	0;	0]*pi/180;
rhuman.plot(theta);
view(-70,22);
axis([-0.6	0.6	-0.3	0.6	0.0	1.8]);

position	=	rhuman.getPos(theta)
orientation	=	rhuman.getOrientation(theta)

position	=

			-0.0000
				0.4606
				0.9758

orientation	=

				0.0000
				0.0000
			-0.8192
			-0.5736

Constructing	human	Manipulability	Object	from	rHuManManipulability

We	take	the	human	model	and	the	existing	database	located	in	./OpenSimData	folder

rhmanip	=	rHuManManipulability(rhuman,'localdata','./OpenSimData','verbose',	true);

******	Human	Manipulability	Loaded.
***	Copying	data	to	workspace	and	enabling	functions	for	assessment.
***	muscleMaxForce	already	loaded	in	workspace	with	muscular-force	database	from	opensim.
***	System	configured	to	be	used.
	

Building	the	augmented	datastruct

Lets	build	the	augmented	datastruct	with	a	set	of	forces	(default	58)	Input	is	simply	the	number	of	joints.	But,	to	see	more	options	check	the	help	for
build_AugmentedComfortDataset

datastruct	=	rhmanip.build_AugmentedComfortDataset(100000);

Building	a	General	Comfortability	Distribution

Now	we	reshape	the	datastruct	to	have	a	comfortability	distribution.

genManip	=	rhmanip.reshape_Comfortability('external',datastruct);

%	Now	plot	the	comfortability	to	observe	the	best	configurations	considering	all	possible	forces	(in	all	directions)
%	and	all	accelerations.	That	is,	the	distribution	of	comfortability	(assuming	the	worst	possible	task)	along	human	workspace
rhmanip.plot_comfortability(genManip,'section',true)

***	Using	external	augmented	datastruct	for	shaping	a	comfortability	distribution	analysis.

***	Maximum	muscular-informed	manipulability	(MiM)	index	computed	in	the	workspace	is:	28.0438

***	shaping	the	comfortability	distribution...
***	Percentage	completed:	10%	at	7.7799	sec
***	Percentage	completed:	20%	at	17.5311	sec
***	Percentage	completed:	30%	at	28.295	sec
***	Percentage	completed:	40%	at	39.7008	sec
***	Percentage	completed:	50%	at	51.3379	sec
***	Percentage	completed:	60%	at	62.7263	sec
***	Percentage	completed:	70%	at	73.4877	sec
***	Percentage	completed:	80%	at	83.5182	sec
***	Percentage	completed:	90%	at	92.8396	sec
***	Percentage	completed:	100%	at	101.2667	sec

ans	=	

		Axes	(Primary)	with	properties:

													XLim:	[-2	2]
													YLim:	[-2	2]
											XScale:	'linear'
											YScale:	'linear'
				GridLineStyle:	'-'
									Position:	[0.1300	0.1100	0.7750	0.8150]
												Units:	'normalized'

		Use	GET	to	show	all	properties

	

Building	a	Task-Specific	Comfortability	Distribution

Now	we	reshape	the	datastruct	to	have	a	task-specific	comfortability	distribution.	Let's	assume	that	a	given	task	is	defined	by	the	following	wrench	oracceleration

force	=	[0;	5;	0;		10;	10;	0];
%	In	other	words,	a	wrench	with	a	torque	in	y	axis	and	a	diagonal	force
%	pointing	45o	in	between	X	and	Y	axis	(that	is,	in	front	and	outwards	the	person)
%
%	Now,	let's	compute	the	gain	between	muscular-informed	assessmetn	and	ergonomics.
task.speed					=	0.5;		%	Medium	speed
task.Intensity	=	0.9;		%	Highly	intensive	activity	(see	the	forces)
task.repeat				=	0;				%	Let'	s	assume	that	this	is	a	1	time	task.
kMuscle	=	rhmanip.compute_gainMuscle(task.speed,	task.Intensity,	task.repeat)

%	kMuscle	must	always	return	a	value	between	[1]:	only	muscle	to	[0]	only	ergonomics
%
%	Now	we	reshape	the	augmented	datastruct	to	have	a	task-specific	comfortability	distribution.
tsManip	=	rhmanip.reshape_TSComfortability(force,	kMuscle,	'external',datastruct);

%	Now	plot	the	comfortability	to	observe	the	best	configurations	considering	the	specific	force
%	That	is,	the	distribution	along	workspace	where	the	human	can	better	apply	such	force/acceleration
rhmanip.plot_comfortability(tsManip)

kMuscle	=

				0.8000

***	Normalizing	input	force.

***	Using	external	augmented	datastruct	for	shaping	a	comfortability	distribution	analysis.

***	shaping	the	comfortability	distribution...
***	Percentage	completed:	10%	at	7.5527	sec
***	Percentage	completed:	20%	at	15.8049	sec
***	Percentage	completed:	30%	at	24.554	sec
***	Percentage	completed:	40%	at	33.6427	sec
***	Percentage	completed:	50%	at	42.7891	sec
***	Percentage	completed:	60%	at	51.8905	sec
***	Percentage	completed:	70%	at	61.0451	sec
***	Percentage	completed:	80%	at	70.1853	sec
***	Percentage	completed:	90%	at	78.9115	sec
***	Percentage	completed:	100%	at	86.8048	sec

ans	=	

		Axes	(Primary)	with	properties:

													XLim:	[-2	2]
													YLim:	[-2	2]
											XScale:	'linear'
											YScale:	'linear'
				GridLineStyle:	'-'
									Position:	[0.1300	0.1100	0.7750	0.8150]
												Units:	'normalized'

		Use	GET	to	show	all	properties

	Top-view	(Y	positive	=	front	of	the	person).

License
The following figure presents a flowchart with the main steps processes for
computing comfortability information via the library.

The MIT License (MIT)

Copyright (c) 2020 rHuMAn Project

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the “Software”), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND ONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

People
● Luis F C Figueredo <figueredo@ieee.org>, University of Leeds

● Mehmet Dogar <m.r.dogar@leeds.ac.uk>, University of Leeds

● Anthony Cohn <A.G.Cohn@leeds.ac.uk>, University of Leeds

We would like to grateful acknowledge the financial support of the EC under
Horizon2020 AI4EU Project and Horizon 2020 Marie Sklodowska-Curie grant
agreement No 795714.

mailto:<figueredo@ieee.org>,
mailto:<figueredo@ieee.org>,

