
Using	Ontop-spatial	
In	this	page	we	provide	an	example	on	how	one	can	write	geospatial	mappings	and	pose	
GeoSPARQL	queries	in	ontop-spatial.	

As	an	example	database,	we	assume	the	database	creating	from	importing	the	
OpenStreatMap	(OSM)	shapefiles	of	Bremen,as	explained	here	

Creating	the	example	database	
Please	note	that	a	geospatial	database	is	needed	in	order	to	exploit	the	geospatial	features	
of	ontop-spatial.	In	this	example	we	assume	a	PostGIS	database.	The	SQL	dump	file	located	
in	this	repository	(lgd-bremen.sql)	can	be	imported	to	your	PostGIS	database	using	the	
following	command:	

(sudo -u postgres) psql -d <_databasename_> -f <path-to>lgd-bremen.sql	

Creating	the	Mappings	
Ontop	supports	both	.obda	and	R2RML	mappings.	We	will	show	how	one	can	write	
geospatial	mappings	in	both	of	these	notations	(See	lgd-bremen.obda	and	lgd-bremen.ttl	
mapping	files	in	the	repository).	An	extract	from	lgd-bremen.obda	is	provided	as	follows:	

mappingId lgd_landuse	
target lgd:{gid} lgd:landUse lgd:{type} . lgd:{gid} lgd:hasName
{name} . lgd:{gid} geo:asWKT {geom}^^geo:wktLiteral . 	
source select gid, type, geom, name from landuse

In	the	mapping	provided	above,	we	want	to	map	the	columns	gid,	type,	geom	and	name	
from	the	table	landuse.	The	column	geom	contains	geometries	in	a	binary	format,	the	Well	
Known	Binary	(WKB)	format.	These	geometries	will	be	mapped	to	the	respective	
GeoSPARQL-compliant	literals	as	specified	by	the	GeoSPARQL	vocabulary,	i.e.,	literals	of	the	
datatype	geosparql:wktLiteral.	WKT	and	GML	are	the	two	standard	text	serializations	of	
geometries	specified	by	the	OGC.	GeoSPARQL	incorporates	these	standards	by	defining	the	
respective	geosparql:wktLiteral	and	geosparql:gmlLiteral	datatypes	in	the	GeoSPARQL	
vocabulary	component.	Ontop-spatial	currently	maps	geometries	that	are	stored	in	WKB	
format	to	the	respective	literals	of	the	geosparql:wktLiteral	datatype,	as	shown	in	the	
example	mapping.	

The	R2RML	notation	of	the	mapping	described	above	is	as	follows:	

Example	of	geospatial	R2RML	mappings	

ATTENTION:	Ontop-spatial	assumes	that	all	geometries	in	the	database	are	expressed	in	
the	Universal	Coordinate	System	(with	code:	4326).	The	geometries	that	are	expressed	in	a	
different	Coordinate	Reference	System,	should	be	tranformed	first	(Or	another	geometry	
column	can	be	added	with	the	geometries	expressed	in	4326).	Geometries	can	be	
transformed	using	the	PostGIS	function	ST_Transform.	For	more	information,	please	visit	
the	PostGIS	reference	page	:	http://postgis.net/docs/reference.html	

Posing	GeoSPARQL	queries	
Now	we	are	ready	to	query	our	database	using	the	OGC	standard	GeoSPARQL,	a	geospatial	
extension	of	the	query	language	SPARQL.	For	example,	let	us	suppose	that	we	want	to	
retrieve	roads	that	intersect	with	ports	and	project	also	the	geometry	and	the	type	of	these	
roads.	Such	a	query	would	be	expressed	in	GeoSPARQL	as	follows:	

 select distinct ?roadtype ?geo1	
 where { 	
 ?x lgd:landUse lgd:port .	
 ?x geo:asWKT ?geo .	
 ?x1 geo:asWKT ?geo1 .	
 ?x1 lgd:roadType ?roadtype .	

FILTER(<http://www.opengis.net/def/function/geosparql/sfIntersects>(?geo,?geo
1))}	

The	query	described	above	is	a	GeoSPARQL	query	that	retrieves	ports	whose	geometries	
intersect	with	the	geometries	of	roads	and	projects	the	geometries	and	the	types	of	these	
roads.	Please	pay	attention	to	the	use	of	the	respective	triple	patterns	that	retrieve	the	
geometries	in	order	to	be	used	as	arguments	in	the	GeoSPARQL	filter	function	that	checks	if	
the	topology	relation	"sf-intersects"	holds	between	these	geometries.	Another	way	to	
express	this	query	is	the	following:	

 select distinct ?roadtype ?geo1	
 where { 	
 ?x lgd:landUse lgd:port .	
 ?x1 geo:sfIntersects ?x .	
 ?x1 lgd:roadType ?roadtype .	
 ?x1 geo:sfIntersects ?x .}	

The	query	described	above	uses	the	triple	pattern	?x1	geo:sfIntersects	?x	instead	of	using	
the	respective	filter	function	that	is	described	above.	Internally,	this	query	and	the	previous	
one	get	translated	into	the	same	SQL	query	that	gets	evaluated	in	the	DBMS,	as	Ontop-
spatial	implements	the	query	rewrite	extension,	transforming	qualitative	geospatial	
queries	(like	this	one)	into	their	quantitative	counterparts	(like	the	previous	one).	Please	
note	though,	that	the	mapping	file	must	not	be	changed	in	either	of	the	two	versions	of	the	
query.	

