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Abstract

The use of machine learning rapidly increases in
high-risk scenarios where decisions are required,
for example in healthcare or industrial monitor-
ing equipment. In crucial situations, a model that
can offer meaningful explanations of its decision-
making is essential. In industrial facilities, the
equipment’s well-timed maintenance is vital to en-
sure continuous operation to prevent money loss.
Using machine learning, predictive and prescrip-
tive maintenance attempt to anticipate and prevent
eventual system failures. This paper introduces a
visualisation tool incorporating interpretations to
display information derived from predictive main-
tenance models, trained on time-series data.

1 Introduction
The majority of research conducted to explain machine learn-
ing (ML) models focuses on the tasks of image recognition
and object identification using feature maps of the convolu-
tional layers in a deep neural network to capture its visual
attention [Samek et al., 2019]. In contrast, only a few works
have researched the explainability of models trained on time
series (TS) [Karlsson et al., 2018].

There exist numerous visualisation methods for image re-
lated tasks [Yuan et al., 2020]. On the other hand, visuali-
sation methods for TS forecasting models are scarce and ex-
hibit limitations. Visplause [Arbesser et al., 2016] for ex-
ample, lacks support for local interpretation and has a com-
plex user interface. The visualisation tool in [Assaf and
Schumann, 2019] is based on convolutional neural networks
and gradient-based interpretation techniques for TS models.
These techniques, however, are specifically designed for net-
works containing only 1D convolutional layers and cannot be
generalised to other architectures, while their applicability is
limited to classification problems.

This paper presents VisioRed, a system for visualising in-
terpretations of TS model predictions, which includes two
main novel techniques [Paraschos, 2021]. The first one,
iPCA, concerns the inclusion of a dimensionality reduction
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Figure 1: VisioRed template and XYZ example

technique in its pipeline that gives valuable latent informa-
tion on the value of its features. The second one, called XYZ,
concerns a model for conditional forecasting of future fea-
ture values given past values and, crucially, a preferred target
value.

We focus specifically on predictive maintenance (PdM), a
very important and popular task nowadays in the industrial
sector. PdM systems can predict with high precision when
repairs or replacements to equipment are required, reducing
additional costs by preventing unnecessary repairs [Carvalho
et al., 2019]. In most PdM tasks, the objective is to pre-
dict a component’s remaining useful lifetime (RUL), thus we
consider regression problems. Typically, PdM involves the
analysis of various TS produced by multiple monitoring sen-
sors. Hence, an explanation that includes not only the sensor
information, to identify the source of the problem, but also
temporal information should often be provided to clarify the
importance of measurements at each time step. Prescriptive
maintenance (PsM), exploiting such information, evolves the
PdM concept by providing suggestions about how to prevent
early failure through maintenance or other actions, along with
the predictions [Khoshafian and Rostetter, 2015].
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2 VisioRed
We propose VisioRed as a visualisation tool for assisting the
user to understand a model’s prediction, by incorporating a
set of modifications, recommendations, forecasters, and inter-
pretability options, as well as some additional functionalities
towards PsM. All the interpretability methods, the black box
predictive model (PM) and the experimentation tools that we
use and develop are compatible with multi-variate TS data,
for the final product to be applicable regardless of their na-
ture. Therefore, the supported dimension of an input instance
xi is a J×N matrix, where J is the number of features of the
TS and N is the number of consecutive selected time steps,
while the output is the RUL prediction.

xi =


v0,0 v0,1 · · · v0,N−1

v1,0 v1,1 · · · v1,N−1

...
...

. . .
...

vJ−1,0 vJ−1,1 · · · vJ−1,N−1

 (1)

2.1 Local Explanation with Feature Importance
VisioRed includes two local explanation techniques, Li-
oNets [Mollas et al., 2019] and LIME [Ribeiro et al., 2016].
Given a new sequence instance, xi, these techniques generate
a set of neighbours L(xi) and then build a transparent linear
model to extract feature importance for explaining the pre-
diction of the PM. Both techniques assign J ×N importance
values tsj,n, one for each time step of each feature. However,
we assume that users would rather avoid this complexity and
examine the importance sj of each feature. A straightforward
way to achieve this, is to present users sj = 1

N

∑N
n=1 tsj,n;

the mean of the importance of all the time steps of each fea-
ture.

A first innovation of VisioRed is an alternative approach
to summarising the importance of a feature, based on princi-
pal components analysis (PCA), called iPCA (interpretations
through PCA) [Paraschos, 2021]. Given a new sequence in-
stance, xi, iPCA applies PCA once for each feature, on the
data comprising the time steps of that feature in xi and its
neighbours L(xi), which are created by the local explanation
technique (LioNets or LIME). By taking the first principal
component of these PCA transformations, we obtain a dis-
tilled representation with dimensionality J instead of J ×N
for both xi and its neighbours L(xi). Then, the local ex-
planation technique trains the linear model on these reduced
representations. The feature importance extracted from this
transparent model will correspond directly to the features, by-
passing the need for aggregation.

Experimental results using a variety of metrics suggest that
iPCA captures the importance of features better or equally
well than averaging the individual importances of all time
steps [Paraschos, 2021]. We believe that this happens be-
cause the distilled representation of the input instances makes
the approximation task of the linear model easier. Moreover,
iPCA can still assign an importance value to the time steps of
each feature, based on the coefficients of the respective PCA
feature transformation. These coefficients do not correspond
to actual time step weights, but they provide a measure of the
contribution of each time step to the formation of the latent

representation of a feature, and by extension of the influence
of each time step to the prediction.

2.2 Modification Recommendations
Towards PsM, VisioRed allows users to experiment with the
values of an instance, in order to test what-if scenarios and
explore their influence on the model’s decisions. Given a
new sequence instance, xi, modifications concern changing
the values in a sub-sequence of a feature’s time steps. The
available modification types are: a) adding uniform noise, b)
adding Gaussian noise, c) replacing with mean value, and d)
replacing with zeros. Users select a feature, a sub-sequence
of time steps and a modification type and view the influence
of the changes to the RUL.

Due to the very large number of different modifications that
users can explore, VisioRed offers a collection of four modifi-
cation recommendations. Each recommendation involves one
feature and one modification. The features involved in these
recommendations are the two features with the highest nega-
tive importance and the two features with the highest positive
importance. For each of these features, VisioRed automati-
cally tests all four modifications and chooses those that are
expected to increase or decrease the RUL most.

2.3 Conditional Forecasting of Feature Values
Modification recommendations allow users to explore the re-
lationship of individual features with the target. To take this
PsM approach a step further, VisioRed includes an additional
neural model, called XYZ, which allows users to enter a
higher RUL than the currently predicted one, and outputs the
values that the features should have in the next time steps.
XYZ is trained using as input the first X time steps of the
features of an instance and the prediction of the PM for that
instance Y , and as an output the last Z time steps of that in-
stance, as shown in Figure 2. During inference, users can pro-
vide the first X values of an instance as well as the preferred
target Y value, and the model will suggest how the Z time
step measurements should be in order to reach the preferred
Y value.

Figure 2: XYZ inputs and output

In addition, VisioRed provides three forecasting options to
allow users to explore the potential Z future time step val-
ues of the features and their effect to the future prediction, as
well as to complement the functionality of XYZ. These are a
custom neural forecaster (NF), the N-Beats [Oreshkin et al.,
2020] forecaster and a static forecaster (SF). The neural ar-
chitecture of NF is similar to that of the PM, as this leads to



high performance as validated through our experiments. As
for the SF, the idea is to use a fast and simple model as a base-
line. The SF is a non-neural solution, that just copies the last
Z time steps and rotates them by 180 degrees.

Combining XYZ with the forecasters, the user gets the best
of both worlds. Providing as input the X latest time step mea-
surements and a preferred Y value, the user can compare the
output of XYZ with the output of a forecaster, in order to see
which feature measurements require intervention in order to
achieve the requested Y value.

2.4 User Interface
Figure 1 shows the user interface (UI) of VisioRed that inte-
grates all the methods discussed earlier in this section. By se-
lecting the preferred interpretation technique the exploration
of an instance’s prediction is initiated. Then, the UI allows the
user to observe individual feature statistics, derived from the
interpretation, and provide all the functions required to alter
the application window and its measurements. Each modifi-
cation setup can require its own parameters, so further neces-
sary controls appear when needed.

A separate area contains the PM’s prediction of an in-
stance, the interpretation’s local prediction, and predictions
for the modifications applied to the instance. Furthermore,
two sets of plots are available. The first set shows the cu-
mulative feature importance of the features, while the second
highlights the importance per time step for a selected feature.
Using a dedicated view slider, the user can display the time
steps of any feature. Moreover, these plots include both the
original interpretation of the examined instance as well as the
interpretation obtained after a modification.

3 Experiments
Having defined the core ingredients of VisioRed, we will now
evaluate its usefulness using the turbofan engine degradation
dataset [Repository, 2008; Ellefsen et al., 2019], which con-
tains a multi-variate TS for PdM. The dataset initially con-
tained measurements for 32 sensors, which after feature se-
lection were reduced to 14. The target value is the RUL of the
engine, which determines how long the engine can run prop-
erly before a malfunction occurs. The code of the following
examples is available in VisioRed’s GitHub1 and DockerHub2

repository.
Therefore, by utilising a PM and given the measurements

of the sensors within a certain time-window, we want to pre-
dict the RUL of an engine, in order to prevent an imminent
failure. Before proceeding with the training of our models,
we define the input dimension as a 50 × 14 matrix, where
50 is the number of time steps (measurements) and 14 the
number of features (sensors) and then we extracted individ-
ual instances, from both the training and testing set, based on
these dimensions. The target value of PM is the value of RUL
at the final time step of each instance.

Using a trained PM, we train the forecaster and XYZ mod-
els with Z = 5 forecast window. We also tune the interpreta-
tion techniques, LioNets and LIME, with and without iPCA,

1https://git.io/JqLci
2https://dockr.ly/3cJ4Qx0

using the fidelity and truthfulness [Mollas et al., 2020] inter-
pretability metrics. The models used in these experiments are
not extensively trained, as our goal was not to achieve top
notch performance, but rather to showcase a variety of inter-
esting tool ideas to experiment with the time step values.

3.1 Prescriptive Maintenance Example

We will now show an example of experimenting with Vi-
sioRed’s XYZ model towards prescriptive maintenance of a
turbofan engine. Right after loading a random instance we
can see how the tool appears to the user in Figure 1. The
RUL that the model predicted is 25.05 time steps, while Li-
oNets predicted a similar value of 25.21. The predicted RUL
is alarming, since it suggests that the engine will malfunction
in a small number (25) of time steps.

Given a forecast window of 5 steps and setting a desired
target of 312 time steps to prolong the engine’s lifetime, XYZ
informs us what the sensors’ values should be. Having that
information, we can make immediate temporary repairs to the
engine, so that the sensor readings range as close as possible
to the ones that the XYZ model suggests. In the tool, we se-
lect the “Forecast (XYZ)” and the “Future” option, because
we want XYZ to generate a prediction for the upcoming 5
time steps. As a forecaster, we keep the default option, the
NF. We define the “Desired Target” to 312. We most defi-
nitely want to optimise the RUL, so we set the target to the
highest possible RUL value. In Figure 1, the results of the
XYZ are shown. After running XYZ, three separate predic-
tions appear. The first is the original RUL prediction, while
the second concerns the RUL value after 5 time steps, as fore-
casted by the NF (16.63). The third prediction, “MOD”, is
the RUL value that we would get if the observations of the
sensors are in agreement with what XYZ has proposed.

In our example, it is evident that the third prediction
(22.53) is not comparable to the desired target we defined
(312), and anyone could draw the misconclusion that the
XYZ model did not succeed. However, even in that case,
XYZ managed to provide a set of measurements which will
increase the expected RUL from 16.63 to 22.53. We, there-
fore, believe that this outcome would help in real case scenar-
ios to prepare more realistic fixes to the targeted machinery,
given the fact that an additional breathing space of approxi-
mately 6 time steps would be added to its RUL.

4 Conclusions

In this paper, we introduced interpretability to the PdM
pipeline via the implementation of novel interpretation meth-
ods and a new TS specific approach, named iPCA. A visuali-
sation tool, called VisioRed, with capabilities including mod-
ifications, recommendations and forecasting was developed
to elevate the interpretability of PdM towards PsM. An ex-
perimental study of VisioRed, demonstrating its efficacy and
effectiveness, has been carried out with a well-known PdM
dataset. In the future, we seek to explore the applicability
of VisioRed in non-regression ML tasks, such as binary or
multi-class classification.

https://git.io/JqLci
https://dockr.ly/3cJ4Qx0
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