
- 1-

AI4EU

WP7.3 RA-7.3.e

PM6 (baseline)

Version 0.1: 2019.06.25

Budapest University of Technology and Economics (BME)

- 2-

Contents
Introduction ... 3

End-to-end Text-to-Speech systems ... 3

Tacotron2 .. 3

WaveGlow ... 3

Measurements of Tacotron2 + WaveGlow inference time on different resources. 4

Description of systems .. 4

Test set .. 5

Model parameters ... 5

Tacotron2 .. 5

WaveGlow ... 5

Measurements .. 5

Results ... 6

Increased speed model description .. 9

Description of narrow band audio .. 9

Modified WaveGlow .. 11

Measurement results of training procedures of increased speed model variants 12

Test training environment ... 12

Training and validation dataset ... 12

Hyperparameters .. 12

Results ... 16

Validation loss ... 16

Attention mechanism .. 18

Proposed model training environment description (GPU based) ... 20

Training on different GPUs .. 20

Parameters of proposed models ... 22

Tacotron2 .. 22

WaveGlow ... 23

References ... 25

- 3-

Introduction
One of the novel neural network based TTS methods is Tacotron2 which is quite flexible as an adaptive

TTS system. It is the first component of an end-to-end system, but it is tested and published by the

authors with 22kHz training dataset. In order to use this system as a TTS component in a real

environment, we started to optimize it. Two different goals were set at the beginning: Firstly to reach

at least real-time or faster system, and secondly to determine a resource efficient training

environment.

End-to-end Text-to-Speech systems
A state-of-the-art end-to-end Text-to-Speech system may consist of the combination of Tacotron2 and

a WaveNet based vocoder. In our experiments we used Tacotron2 and the WaveGlow model which

combines the advantages of the Flow and the WaveNet models..

Tacotron2
Tacotron2 is a fully neural network based solution which is based on a sequence-to-sequence model.

There is an encoder part which is responsible for the processing of input text or phoneme sequence.

The other component is the decoder with a postnet which generates the Mel spectrum output

sequence. The connection between the encoder and the decoder is ensured by the attention

mechanism.

The system is described in detail in (Jonathan Shen, 2017): Jonathan Shen, Ruoming Pang, Ron J. Weiss,

Mike Schuster, Navdeep Jaitly, Zongheng Yang, Zhifeng Chen, Yu Zhang, Yuxuan Wang, RJ Skerry-Ryan,

Rif A. Saurous, Yannis Agiomyrgiannakis, Yonghui Wu: Natural TTS Synthesis by Conditioning WaveNet

on Mel Spectrogram Predictions, https://arxiv.org/abs/1712.05884

WaveGlow
WaveGlow is a model which can generate speech from a Mel spectrum sequence. This model can

generate high quality speech, it reaches better MOS (mean opinion score) values than the original

WaveNet solution.

The system is described in detail in (Ryan Prenger, 2018): Ryan Prenger, Rafael Valle, Bryan Catanzaro:

WaveGlow: A Flow-based Generative Network for Speech Synthesis, https://arxiv.org/abs/1811.00002

https://arxiv.org/abs/1712.05884
https://arxiv.org/abs/1811.00002

- 4-

Measurements of Tacotron2 + WaveGlow inference time on different

resources.

Deep learning based end-to-end systems require a lot of calculations, the real-time operation is not

trivial. The speed depends on the model architecture, the size of the model, the text and the runtime

environment. There were three different environments where we synthesized a short text, and

calculated the real-time factor.

Description of systems
There were three systems, a small and a big desktop system and a server one. The oldest GPU is based

on the NVIDIA® Maxwell™ architecture, the other one on the Pascal™ architecture and in the server

machine the GPU uses the Volta™ architecture. (The current desktop Turing™ architecture is quite

similar to the Volta™ architecture in performance).

Table 1: Small desktop system

Name Small desktop system

CPU Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz

System Memory 8 Gbyte

GPU NVIDIA Titan Xp

GPU Memory 12 Gbyte

OS Ubuntu 16.04.6 LTS

Table 2: Big desktop system

Name Big desktop system

CPU Intel(R) Core(TM) i7-6850K CPU @ 3.60GHz

System Memory 128 Gbyte

GPU1 NVIDIA Titan Xp

GPU1 Memory 12 Gbyte

GPU2 NVIDIA Titan X

GPU2 Memory 12 Gbyte

GPU3 NVIDIA Geforce 970

GPU3 Memory 4 Gbyte

OS Ubuntu 16.04.6 LTS

Table 3: Server system

Name server system

CPU Intel(R) Xeon(R) Platinum 8167M CPU @
2.00GHz

System Memory 128 Gbyte

GPU1 NVIDIA V100

GPU1 Memory 16 Gbyte

OS Ubuntu 16.04.6 LTS

- 5-

Test set
The test set was a short fable: The North Wind and the Sun. The Hungarian translation was used in the

test. The fable contains 9 sentences. The length of the synthesized audio file is 53.34 sec.

Model parameters

Tacotron2

 During the test the source code from https://github.com/NVIDIA/tacotron2 was used. The main

parameters are shown in Table 4.

Table 4:Tacotron2 default parameters

Name of parameter Value of parameter

sampling_rate 22050

filter_length 1024

hop_length 256

win_length 1024

n_mel_channels 80

mel_fmin 0.0

mel_fmax 8000.0

The model was trained with Hungarian sentences, the input was phoneme based.

WaveGlow

During the test the source from https://github.com/NVIDIA/waveglow was used. The main parameters

are shown in Table 5.

Table 5: WaveGlow default paramters

Name of parameter Value of parameter

n_mel_channels 80

n_flows 12

n_group 8

n_early_every 4

n_early_size 2

WN_config

 n_layers 8

 n_channels 512

 kernel_size 3

The speed of the WaveGlow model is not sensitive for the training, the inference time depends on the

model parameters.

Measurements
The test code was written in python, the pytorch deep learning framework system was used. During

the test the text was read from a file, and the synthesized speech was also written to files. The loading

of model was not included in the measurement. Because pytorch is asynchronous, the

torch.cuda.synchronize() function was used for getting proper timing values.

https://github.com/NVIDIA/tacotron2
https://github.com/NVIDIA/waveglow

- 6-

Results
The summarized results are shown in Table 6. The first column contains the sample rate (green: small

desktop system, orange: big desktop system, pink: server system), the second column shows the

system under test. The main parameters of the test system are given above. The CPU and GPU columns

show the processor type. The floating-point precisions column is 16 or 32 bits. There are some rows

where no GPU was used, in these cases 32 bit floating point precision was applied because the CPU

implementation did not support 16 bit alternatives.

The fulltime column shows the generation time of all 9 sentences in seconds. The summary time of the

generated speech is the same, all systems generate 53 second speech audio.

The real-time(RT) factor column shows how many seconds of speech is generated during 1 second

runtime. The larger number is better, the 1.0 value shows the real-time operation (pink: very low,

orange: low, yellow: near rel-time, green: better than real-time RT factor). The synth time of 1 sec

column shows the inverted RT factor, how many seconds generation time is required for 1 second

speech.

- 7-

Table 6: Results of speed test

Sample
rate System CPU GPU

floating point
precision SW version

Full
time

Lenght
of wave

RT
factor

synth.
time of

1s comment

[Hz] [bits] [s] [s] [s] [*]

22050
small

desktop
system

Intel® Core™ i7-

2600K CPU @
3.40GHz

------ 32 Torch 1.0.0 1032 53.34 0.052 19.348 CPU implementation allows only 32 bit floating
point precision. 16 bit fp is not implemented.

22050
small

desktop
system

Intel® Core™ i7-

2600K CPU @
3.40GHz

Titan
Xp

32 Torch 1.0.0 161 53.34 0.331 3.018

22050
big

desktop
system

Intel® Core™ i7-

6850K CPU @
3.60GHz

Titan
Xp

16* Torch 1.0.1 154 53.34 0.346 2.887 Mixed fp precision, Waveglow 16 bits, Tacotron2
32 bits

22050
big

desktop
system

Intel® Core™ i7-

6850K CPU @
3.60GHz

------ 32 Torch 1.0.1 336 53.34 0.159 6.299

22050
big

desktop
system

Intel® Core™ i7-

6850K CPU @
3.60GHz

Titan
Xp

32 Torch 1.0.1 163 53.34 0.327 3.056

22050
big

desktop
system

Intel® Core™ i7-

6850K CPU @
3.60GHz

Titan
X

32 Torch 1.0.1 281 53.34 0.190 5.268

22050
big

desktop
system

Intel® Core™ i7-

6850K CPU @
3.60GHz

970 32 Torch 1.0.1 1628* 53.34 0.033 30.521 Estimated time based on the first 4 sentences.
The 970 GPU has not enough memory.

8000*
big

desktop
system

Intel® Core™ i7-

6850K CPU @
3.60GHz

Titan
Xp

32 Torch 1.0.1 60 53.34 0.889 1.125

Simulated 8kHz. Tacotron2 worked on 22k. The
output of Tacotron2 was reduced to 62 channels
and the frames were resampled with 0.75 factor.
Hop size was 128 instead of the original 256.

8000
small

desktop
system

Intel® Core™ i7-

2600K CPU @
3.40GHz

Titan
Xp

32 Torch 1.0.0 59 53.34 0.904 1.106

- 8-

Sample
rate System CPU GPU

floating point
precision SW version

Full
time

Lenght
of wave

RT
factor

synth.
time of

1s comment

[Hz] [bits] [s] [s] [s] [*]

8000 server
system

Intel® Xeon®
Platinum 8167M

CPU @ 2.00GHz

V100 32
Torch

1.0.1.post2
10 53.34 5.334 0.187

8000 server
system

Intel® Xeon®
Platinum 8167M
CPU @ 2.00GHz

V100 16*
Torch

1.0.1.post2
8.6 53.34 6.202 0.161

Only WaveGlow ran on 16 bits.

22050 server
system

Intel® Xeon®
Platinum 8167M
CPU @ 2.00GHz

V100 32
Torch

1.0.1.post2
16.5 53.34 3.233 0.309

22050* server
system

Intel® Xeon®
Platinum 8167M
CPU @ 2.00GHz

------ 32
Torch

1.0.1.post2
189 53.34 0.282 3.543

CPU load was about 1000% (about 10 cores)

The fastest environment was the system with V100 GPU. On this GPU the system was faster than real-time both on 22kHz and 8kHz and also on 32 and 16

bits. The older GPUs do not support some matrix operations, which cause the slower than real-time operation. We compared the V100 speed to an NVIDIA

RTX 2080 GPU and had similar values. Coloring of RT factor: red: slowest/yellow: realtime/green: fastest

- 9-

Increased speed model description
There are several collaborative AI system scenarios where the good quality is required, but the wide

spectral range is not necessary, the regular telephony range is enough (300 - 3400Hz). State-of-the-art

systems give solutions to 16kHz or 22kHz sample rates. Next to quality the speed of inference time is

also important. The real-time speech generation in a multichannel system is currently not cost

effective, so increasing the speed of models is required. For a lot of solutions the lower sample rate is

acceptable, but the current end-to-end systems do not have this kind of optimized codes. Those

systems are hyper-optimized for better quality.

Description of narrow band audio
The 16kHz and 22kHz audio is well representable with 80 Mel channels with 256 hop size (16ms @

16000Hz). The 8kHz audio requires less channels. Figure 1 shows the original 80 Mel channels. If we

use the same channel number on 8kHz sample rate, the resolution is too detailed (Figure 2), the

calculation time would be same for one frame.

Figure 1: 80 Mel filters 0-8000Hz

- 10-

Figure 2: 80 Mel filters 0-4000Hz

In order to reach the same quality at 8KHz for the lower band (0-4KHz) than for 16KHz, 62 Mel channels

is sufficient (Figure 3).

Figure 3: 62 Mel filters 0-4000Hz

The 62 channels are almost same than the lower 62 channels of the 80 Mel channel at 16 kHz. The

relation of the channels is shown in Figure 4. The light curve shows the 80 Mel channel @ 16kHz, the

dark curve shows the 64 Mel channels @ 8kHz.

- 11-

Figure 4: Compatibility of 62 and 80 Mel filters

Modified WaveGlow

The WaveGlow model requires a lot of calculation. Fewer Mel channels give faster speed during

training and inference time. The original WaveGlow is not prepared for different number of Mel

channels, a small code modification is required. Calling the TacotronSTFT function in class Mel2Samp

init function does not contain the n_mel_channels parameter. The modified code is shown at the end

of this document.

The other method to increase the speed of WaveGlow inference mode is using fewer WaveNet (WN)

layers. The calculation time of WN layers is the largest part of the full calculation time. The original

publication contains 8 layers, but for 62 Mel channels WaveGlow with 7 layers also properly works.

The original paper of WaveGlow was published with 512 WN channels. (It is not the same as Mel

channels). It is not required on 8 kHz, 256 WN channels is enough for the same quality. The original

authors later published a model on 22kHz which use only 256 WN channels, so decreasing of WN

channels is widely supported.

- 12-

Measurement results of training procedures of increased speed model

variants
The decreased sample rate allows the reduction of the Tacotron2 model, too. The method is based on

hyper parameter optimization. The source code was the same as the published code

(https://github.com/NVIDIA/tacotron2). The stopping criteria is based on validation loss. Next to

validation loss the attention model was also observed. Distributed training was used and the typical

batch size was 80 per GPU, so there were 640 sentences. A typical training process took about 12-16

hours (on 8x V100).

Test training environment
The test environment was a server configuration with the following main components:

 GPU: NVIDIA Tesla V100 (16 GB)

 CPU: 2.0 GHz Intel® Xeon® Platinum 8167M

 Number of GPUs: 8

 Number of CPU’s cores: 52

 System memory: 768 Gbyte

 OS: Ubuntu 16.04

Training and validation dataset
The training dataset was LJSpeech 1.1:

From: https://keithito.com/LJ-Speech-Dataset: „This is a public domain speech dataset

consisting of 13,100 short audio clips of a single speaker reading passages from 7 non-

fiction books. A transcription is provided for each clip. Clips vary in length from 1 to

10 seconds and have a total length of approximately 24 hours.

The texts were published between 1884 and 1964, and are in the public domain. The

audio was recorded in 2016-17 by the LibriVox project and is also in the public

domain”.

Source of dataset: https://keithito.com/LJ-Speech-Dataset/

The dataset was cut into three pieces: training, validation and test set. We used the separation as in

the tacotron2 source: https://github.com/NVIDIA/tacotron2/tree/master/filelists

Hyperparameters
Because of big computing requirements we manually changed the hyperparameters. There were 10

different configurations and 12 training procedures. There was a configuration (ljspeech-62-d512)

which was examined on three different environments.

The following tables (Table 7 - 16) contain the main parameters of Tacotron2 models. The changed

parameters were highlighted with bold.

https://github.com/NVIDIA/tacotron2
https://keithito.com/LJ-Speech-Dataset
https://librivox.org/
https://keithito.com/LJ-Speech-Dataset/
https://github.com/NVIDIA/tacotron2/tree/master/filelists

- 13-

Table 7: Tacotron2 parameters (ljspeech-80-d1024)

ljspeech-80-d1024 Name of parameter Value of parameter

 sampling_rate 8000

filter_length 512

hop_length 128

win_length 512

n_mel_channels 80

mel_fmin 0.0

mel_fmax 4000.0

decoder_rnn_dim 1024

attention_rnn_dim 1024

encoder_embedding_dim 512

symbols_embedding_dim 512

Table 8: Tacotron2 parameters (ljspeech-62-d1024)

ljspeech-62-d1024 Name of parameter Value of parameter

 sampling_rate 8000

filter_length 512

hop_length 128

win_length 512

n_mel_channels 62

mel_fmin 0.0

mel_fmax 4000.0

decoder_rnn_dim 1024

attention_rnn_dim 1024

encoder_embedding_dim 512

symbols_embedding_dim 512

Table 9: Tacotron2 parameters (ljspeech-62-d512)

ljspeech-62-d512 Name of parameter Value of parameter

 sampling_rate 8000

filter_length 512

hop_length 128

win_length 512

n_mel_channels 62

mel_fmin 0.0

mel_fmax 4000.0

decoder_rnn_dim 512

attention_rnn_dim 512

encoder_embedding_dim 512

symbols_embedding_dim 512

- 14-

Table 10: Tacotron2 parameters (ljspeech-62-d512-e256)

ljspeech-62-d512-e256 Name of parameter Value of parameter

 sampling_rate 8000

filter_length 512

hop_length 128

win_length 512

n_mel_channels 62

mel_fmin 0.0

mel_fmax 4000.0

decoder_rnn_dim 512

attention_rnn_dim 512

encoder_embedding_dim 256

symbols_embedding_dim 256

Table 11: Tacotron2 parameters (ljspeech-62-d384)

ljspeech-62-d384 Name of parameter Value of parameter

 sampling_rate 8000

filter_length 512

hop_length 128

win_length 512

n_mel_channels 62

mel_fmin 0.0

mel_fmax 4000.0

decoder_rnn_dim 384

attention_rnn_dim 384

encoder_embedding_dim 512

symbols_embedding_dim 512

Table 12: Tacotron2 parameters (ljspeech-62-d512-a768)

ljspeech-62-d512-a768 Name of parameter Value of parameter

 sampling_rate 8000

filter_length 512

hop_length 128

win_length 512

n_mel_channels 62

mel_fmin 0.0

mel_fmax 4000.0

decoder_rnn_dim 512

attention_rnn_dim 768

encoder_embedding_dim 512

symbols_embedding_dim 512

- 15-

Table 13: Tacotron2 parameters (ljspeech-62-d640)

ljspeech-62-d640 Name of parameter Value of parameter

 sampling_rate 8000

filter_length 512

hop_length 128

win_length 512

n_mel_channels 62

mel_fmin 0.0

mel_fmax 4000.0

decoder_rnn_dim 640

attention_rnn_dim 640

encoder_embedding_dim 512

symbols_embedding_dim 512

Table 14: Tacotron2 parameters (ljspeech-62-d512-e384)

ljspeech-62-d512-e384 Name of parameter Value of parameter

 sampling_rate 8000

filter_length 512

hop_length 128

win_length 512

n_mel_channels 62

mel_fmin 0.0

mel_fmax 4000.0

decoder_rnn_dim 512

attention_rnn_dim 512

encoder_embedding_dim 384

symbols_embedding_dim 384

Table 15: Tacotron2 parameters (ljspeech-62-d512-e640)

ljspeech-62-d512-e640 Name of parameter Value of parameter

 sampling_rate 8000

filter_length 512

hop_length 128

win_length 512

n_mel_channels 62

mel_fmin 0.0

mel_fmax 4000.0

decoder_rnn_dim 512

attention_rnn_dim 512

encoder_embedding_dim 640

symbols_embedding_dim 640

- 16-

Table 16: Tacotron2 parameters (ljspeech-62-d512-p384)

ljspeech-62-d512-p384 Name of parameter Value of parameter

 sampling_rate 8000

filter_length 512

hop_length 128

win_length 512

n_mel_channels 62

mel_fmin 0.0

mel_fmax 4000.0

decoder_rnn_dim 512

attention_rnn_dim 512

encoder_embedding_dim 512

symbols_embedding_dim 512

postnet_embedding_dim 384

Results

Validation loss

At the base model we modified only the sample rate and the connected hop, window and filter length.

They are not signed by bold, they are the same at all models.

The base model contains 1024 LSTM cells in the decoder but the number of Mel channels were

decreased so less cells are enough to model the data. The 384, 512, 640 LSTM cells were investigated,

and the 512 LSTM cells was the most successful. The size of the encoder is independent of the

decoder’s Mel channel number, and the training showed that changing the encoder size cause worse

performance. The changing of validation loss is presented in Figure Hiba! A hivatkozási forrás nem

található..

- 17-

-

Figure 5: Validation values of the different models

- 18-

Attention mechanism

Between the encoder and the decoder the attention mechanism supports the connection. The state

of the attention mechanism is observable via alignment figures. They show which decoder timesteps

use which encoder timesteps. The following figures show the alignments of a training process at three

different validations. At the first one (Fig. 6) there is no connection between encoder and decoder, at

the second one it started to form (Fig. 7). At the third one (Fig. 8) the connection appears as a diagonal

curve.

Figure 6: The attention of ljspeech-62-d512 @8000 iterations

Figure 7: The attention of ljspeech-62-d512 @9000 iterations

- 19-

Figure 8: The attention of ljspeech-62-d512 @10000 iterations

The table below shows the summarized performance of trainings. The Alignment values show the

number of iterations where the diagonal curves started to form on alignment pictures. In comments

that training procedures are signed where the form of curve of validation loss suggests the validation

loss might not be the best value, a bigger patience of early stopping may allow more training.

Table 17: The summarized performance of trainings

 Alignment
Best

validation
value

@step Comment
Number
of GPUs

BatchSize

ljspeech-80-d1024 6000 8 80

ljspeech-62-d1024 7000 8 80

ljspeech-62-d512 9000 0.3078 19000 8 80

ljspeech-62-d512-e256 15000 8 80

ljspeech-62-d384 17000 0.3135 23000 may need more training 8 80

ljspeech-62-d512-a768 10000 8 80

ljspeech-62-d640 9000 0.3168 22000 may need more training 8 80

ljspeech-62-d512-e384 8000 8 80

ljspeech-62-d512-e640 >20000 no attention curve 8 80

ljspeech-62-d512-p384 11000 8 80

ljspeech-62-d512-
1TitanXp

18000 0.3051 58000

1 64

ljspeech-62-d512-
2TitanX

13000 0.3365 16000
may need more training

2 64

At some models, where the number of LSTM cells was lower than at the basic model, the memory

requirement was smaller, so we could increase the batch size, but we left it on the same value on 8

GPUs systems. It was beneficial because the same iteration steps meant the same epochs.

The speed of learning, the value of validation loss and the alignment values show that the best model

is ljspeech-62-d512.

- 20-

Proposed model training environment description (GPU based)

Training on different GPUs
The training of a DNN is a long procedure, so more GPUs generally mean less training time. At

Tacotron2 it is true, in our tests the model training was the fastest on a 8 GPUs system and the slowest

on a single GPU.

The figure below shows the validation loss of the 8 GPU system. It reached the best value at 19000

iterations. It took 10h50 min time. The batch size of distributed training was 8x80 = 640 sentences

Figure 9: Validation loss on 8xV100 GPUs

The question is that smaller systems can be efficient enough? Can they reach same loss value? We ran

the same training on a single GPU system. The GPU was an NVidia Titan Xp. Because it contains less

memory than the V100 (12 Gbyte instead of 16 Gbyte), the batch size was decreased to 64. It reached

the best value after 58000 iterations. The figure below shows the validation loss of training. The

alignment became good after 18000 iterations. The best validation loss was 0.3051 which is practically

the same as the 8 GPUs system’s validation loss (0.3078). It took about 5.4 times more than with 8

GPUs (58h30min). Depending on pricing of GPUs the single GPU environment would be cost effective,

if the training time is less important.

Figure 10: Validation loss on a single Titan Xp GPU

- 21-

The other option is to use more GPUs, but less than 8. The third option was two Nvidia Titan X boards

in distributed training. As expected it was faster than one GPU, but slower than 8 GPU training. The

batch size was 2x64=128 sentences. It reached the proper alignment after 13000 iterations. In our

experiment the best validation loss was only 0.3365, but the tendency was good, so it would reach

better values. A technical difficulty caused the end of this training. From tendency and compared with

the single GPU training with the same epoch, the two GPU distributed training may provide the same

or better results than a single GPU. The 2 GPU training reached the 16000 iterations after 16 hours.

Figure 11: Validation loss on two Titan X GPUs

- 22-

Parameters of proposed models

Tacotron2

Source:

https://github.com/NVIDIA/tacotron2

Parameters (hparam.py)
import tensorflow as tf

from text import symbols

def create_hparams(hparams_string=None, verbose=False):

 """Create model hyperparameters. Parse nondefault from given string."""

 hparams = tf.contrib.training.HParams(

 ################################

 # Experiment Parameters #

 ################################

 epochs=1500,

 iters_per_checkpoint=1000,

 seed=1234,

 dynamic_loss_scaling=True,

 fp16_run=True,

 distributed_run=True,

 dist_backend="nccl",

 dist_url="tcp://localhost:54321",

 cudnn_enabled=True,

 cudnn_benchmark=False,

 ignore_layers=['embedding.weight'],

 ################################

 # Data Parameters #

 ################################

 load_mel_from_disk=False,

 training_files='filelists/ljs_audio_text_train_filelist.txt',

 validation_files='filelists/ljs_audio_text_val_filelist.txt',

 text_cleaners=['english_cleaners'],

 ################################

 # Audio Parameters #

 ################################

 max_wav_value=32768.0,

 sampling_rate=8000,

 filter_length=512,

 hop_length=128,

 win_length=512,

 n_mel_channels=62,

 mel_fmin=0.0,

 mel_fmax=4000.0,

 ################################

 # Model Parameters #

 ################################

 n_symbols=len(symbols),

 symbols_embedding_dim=512,

 # Encoder parameters

 encoder_kernel_size=5,

 encoder_n_convolutions=3,

 encoder_embedding_dim=512,

https://github.com/NVIDIA/tacotron2

- 23-

 # Decoder parameters

 n_frames_per_step=1, # currently only 1 is supported

 decoder_rnn_dim=512, # 1024

 prenet_dim=256,

 max_decoder_steps=1000,

 gate_threshold=0.5,

 p_attention_dropout=0.1,

 p_decoder_dropout=0.1,

 # Attention parameters

 attention_rnn_dim=512, #1024

 attention_dim=128,

 # Location Layer parameters

 attention_location_n_filters=32,

 attention_location_kernel_size=31,

 # Mel-post processing network parameters

 postnet_embedding_dim=512,

 postnet_kernel_size=5,

 postnet_n_convolutions=5,

 ################################

 # Optimization Hyperparameters #

 ################################

 use_saved_learning_rate=False,

 learning_rate=1e-3,

 weight_decay=1e-6,

 grad_clip_thresh=1.0,

 batch_size=80,

 mask_padding=True # set model's padded outputs to padded values

)

 if hparams_string:

 tf.logging.info('Parsing command line hparams: %s', hparams_string)

 hparams.parse(hparams_string)

 if verbose:

 tf.logging.info('Final parsed hparams: %s', hparams.values())

 return hparams

WaveGlow

Source

https://github.com/NVIDIA/waveglow

Parameters (config.json)
{

 "train_config": {

 "fp16_run": true,

 "output_directory": "./out",

 "log_directory": "./log",

 "epochs": 100000,

 "learning_rate": 1e-4,

 "sigma": 1.0,

 "iters_per_checkpoint": 2000,

 "batch_size": 16,

https://github.com/NVIDIA/waveglow

- 24-

 "seed": 1234,

 "checkpoint_path": ""

 },

 "data_config": {

 "training_files": "train_files.txt",

 "segment_length": 16768,

 "sampling_rate": 8000,

 "filter_length": 512,

 "hop_length": 128,

 "win_length": 512,

 "mel_fmin": 0.0,

 "mel_fmax": 4000.0

 },

 "dist_config": {

 "dist_backend": "nccl",

 "dist_url": "tcp://localhost:54321"

 },

 "waveglow_config": {

 "n_mel_channels": 62,

 "n_flows": 12,

 "n_group": 8,

 "n_early_every": 4,

 "n_early_size": 2,

 "WN_config": {

 "n_layers": 7,

 "n_channels": 256,

 "kernel_size": 3

 }

 }

}

Modified function in mel2samp.py

In order to train WaveGlow with 62 Mel channels you have to modify the source code, because the

Mel spectrum calculation does not get this parameter. The default value is 80.

The modified line is emphasized by bold font.

...

class Mel2Samp(torch.utils.data.Dataset):

 """

 This is the main class that calculates the spectrogram and returns the

 spectrogram, audio pair.

 """

 def __init__(self, training_files, segment_length, filter_length,

 hop_length, win_length, sampling_rate, mel_fmin,

mel_fmax):

 self.audio_files = files_to_list(training_files)

 random.seed(1234)

 random.shuffle(self.audio_files)

 self.stft = TacotronSTFT(filter_length=filter_length,

 hop_length=hop_length,

 win_length=win_length,

 sampling_rate=sampling_rate,

 n_mel_channels=62,

 mel_fmin=mel_fmin, mel_fmax=mel_fmax)

 self.segment_length = segment_length

 self.sampling_rate = sampling_rate

- 25-

References
Jonathan Shen, R. P.-R. (2017). Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram

Predictions. Forrás: https://arxiv.org/abs/1712.05884

Ryan Prenger, R. V. (2018). WaveGlow: A Flow-based Generative Network for Speech Synthesis.

Forrás: https://arxiv.org/abs/1811.00002

