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Introduction 
One of the novel neural network based TTS methods is Tacotron2 which is quite flexible as an adaptive 

TTS system. It is the first component of an end-to-end system, but it is tested and published by the 

authors with 22kHz training dataset. In order to use this system as a TTS component in a real 

environment, we started to optimize it. Two different goals were set at the beginning: Firstly to reach 

at least real-time or faster system, and secondly to determine a resource efficient training 

environment.  

End-to-end Text-to-Speech systems 
A state-of-the-art end-to-end Text-to-Speech system may consist of the combination of Tacotron2 and 

a WaveNet based vocoder. In our experiments we used Tacotron2 and the WaveGlow model which 

combines the advantages of the Flow and the WaveNet models..  

Tacotron2 
Tacotron2 is a fully neural network based solution which is based on a sequence-to-sequence model. 

There is an encoder part which is responsible for the processing of input text or phoneme sequence. 

The other component is the decoder with a postnet which generates the Mel spectrum output 

sequence. The connection between the encoder and the decoder is ensured by the attention 

mechanism.  

The system is described in detail in (Jonathan Shen, 2017): Jonathan Shen, Ruoming Pang, Ron J. Weiss, 

Mike Schuster, Navdeep Jaitly, Zongheng Yang, Zhifeng Chen, Yu Zhang, Yuxuan Wang, RJ Skerry-Ryan, 

Rif A. Saurous, Yannis Agiomyrgiannakis, Yonghui Wu: Natural TTS Synthesis by Conditioning WaveNet 

on Mel Spectrogram Predictions, https://arxiv.org/abs/1712.05884 

WaveGlow 
WaveGlow is a model which can generate speech from a Mel spectrum sequence. This model can 

generate high quality speech, it reaches better MOS (mean opinion score) values than the original 

WaveNet solution.  

The system is described in detail in (Ryan Prenger, 2018): Ryan Prenger, Rafael Valle, Bryan Catanzaro: 

WaveGlow: A Flow-based Generative Network for Speech Synthesis, https://arxiv.org/abs/1811.00002 

  

https://arxiv.org/abs/1712.05884
https://arxiv.org/abs/1811.00002
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Measurements of Tacotron2 + WaveGlow inference time on different 

resources.  
 

Deep learning based end-to-end systems require a lot of calculations, the real-time operation is not 

trivial. The speed depends on the model architecture, the size of the model, the text and the runtime 

environment. There were three different environments where we synthesized a short text, and 

calculated the real-time factor.   

Description of systems 
There were three systems, a small and a big desktop system and a server one. The oldest GPU is based 

on the NVIDIA® Maxwell™ architecture, the other one on the Pascal™ architecture and in the server 

machine the GPU uses the Volta™ architecture. (The current desktop Turing™ architecture is quite 

similar to the Volta™ architecture in performance). 

Table 1: Small desktop system 

Name Small desktop system  

CPU Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz 

System Memory 8 Gbyte 

GPU NVIDIA Titan Xp 

GPU Memory 12 Gbyte 

OS  Ubuntu 16.04.6 LTS 
 

Table 2: Big desktop system 

Name Big desktop system  

CPU Intel(R) Core(TM) i7-6850K CPU @ 3.60GHz 

System Memory 128 Gbyte 

GPU1 NVIDIA Titan Xp 

GPU1 Memory 12 Gbyte 

GPU2 NVIDIA Titan X 

GPU2 Memory 12 Gbyte 

GPU3 NVIDIA Geforce 970 

GPU3 Memory 4 Gbyte 

OS  Ubuntu 16.04.6 LTS 
 

Table 3: Server system 

Name server system  

CPU Intel(R) Xeon(R) Platinum 8167M CPU @ 
2.00GHz 

System Memory 128 Gbyte 

GPU1 NVIDIA V100 

GPU1 Memory 16 Gbyte 

OS  Ubuntu 16.04.6 LTS 
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Test set 
The test set was a short fable: The North Wind and the Sun. The Hungarian translation was used in the 

test. The fable contains 9 sentences. The length of the synthesized audio file is 53.34 sec. 

Model parameters 

Tacotron2 

 During the test the source code from https://github.com/NVIDIA/tacotron2 was used. The main 

parameters are shown in Table 4. 

Table 4:Tacotron2 default parameters 

Name of parameter Value of parameter 

sampling_rate 22050 

filter_length 1024 

hop_length 256 

win_length 1024 

n_mel_channels 80 

mel_fmin 0.0 

mel_fmax 8000.0 
 

The model was trained with Hungarian sentences, the input was phoneme based. 

WaveGlow 

During the test the source from https://github.com/NVIDIA/waveglow was used. The main parameters 

are shown in Table 5. 

Table 5: WaveGlow default paramters 

Name of parameter Value of parameter 

n_mel_channels 80 

n_flows 12 

n_group 8 

n_early_every 4 

n_early_size 2 

WN_config  

   n_layers 8 

   n_channels 512 

   kernel_size 3 
 

The speed of the WaveGlow model is not sensitive for the training, the inference time depends on the 

model parameters. 

Measurements  
The test code was written in python, the pytorch deep learning framework system was used. During 

the test the text was read from a file, and the synthesized speech was also written to files. The loading 

of model was not included in the measurement. Because pytorch is asynchronous, the 

torch.cuda.synchronize() function was used for getting proper timing values. 

https://github.com/NVIDIA/tacotron2
https://github.com/NVIDIA/waveglow
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Results 
The summarized results are shown in Table 6. The first column contains the sample rate (green: small 

desktop system, orange: big desktop system, pink: server system),  the second column shows the 

system under test. The main parameters of the test system are given above. The CPU and GPU columns 

show the processor type. The floating-point precisions column is 16 or 32 bits. There are some rows 

where no GPU was used, in these cases 32 bit floating point precision was applied because the CPU 

implementation did not support 16 bit alternatives. 

The fulltime column shows the generation time of all 9 sentences in seconds. The summary time of the 

generated speech is the same, all systems generate 53 second speech audio.  

The real-time(RT) factor column shows how many seconds of speech is generated during 1 second 

runtime. The larger number is better, the 1.0 value shows the real-time operation (pink: very low,  

orange: low, yellow: near rel-time, green: better than real-time RT factor). The synth time of 1 sec 

column shows the inverted RT factor, how many seconds generation time is required for 1 second 

speech. 
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Table 6: Results of speed test 

Sample 
rate System CPU GPU 

floating point 
precision SW version 

Full 
time 

Lenght 
of wave 

RT 
factor 

synth. 
time of 

1s comment 

[Hz]    [bits]  [s] [s]  [s] [*] 

22050 
small 

desktop 
system 

Intel® Core™ i7-

2600K CPU @ 
3.40GHz 

------ 32 Torch 1.0.0 1032 53.34 0.052 19.348 CPU implementation allows only 32 bit floating 
point precision. 16 bit fp is not implemented. 

22050 
small 

desktop 
system 

Intel® Core™ i7-

2600K CPU @ 
3.40GHz 

Titan 
Xp 

32 Torch 1.0.0 161 53.34 0.331 3.018 

 

22050 
big 

desktop 
system 

Intel® Core™ i7-

6850K CPU @ 
3.60GHz 

Titan 
Xp 

16* Torch 1.0.1 154 53.34 0.346 2.887 Mixed fp precision, Waveglow 16 bits, Tacotron2 
32 bits 

22050 
big 

desktop 
system 

Intel® Core™ i7-

6850K CPU @ 
3.60GHz 

------ 32 Torch 1.0.1 336 53.34 0.159 6.299 

 

22050 
big 

desktop 
system 

Intel® Core™ i7-

6850K CPU @ 
3.60GHz 

Titan 
Xp 

32 Torch 1.0.1 163 53.34 0.327 3.056 

 

22050 
big 

desktop 
system 

Intel® Core™ i7-

6850K CPU @ 
3.60GHz 

Titan 
X 

32 Torch 1.0.1 281 53.34 0.190 5.268 

 

22050 
big 

desktop 
system 

Intel® Core™ i7-

6850K CPU @ 
3.60GHz 

970 32 Torch 1.0.1 1628* 53.34 0.033 30.521 Estimated time based on the first 4 sentences. 
The 970 GPU has not enough memory. 

8000* 
big 

desktop 
system 

Intel® Core™ i7-

6850K CPU @ 
3.60GHz 

Titan 
Xp 

32 Torch 1.0.1 60 53.34 0.889 1.125 

Simulated 8kHz. Tacotron2 worked on 22k. The 
output of Tacotron2 was reduced to 62 channels 
and the frames were resampled with 0.75 factor. 
Hop size was 128 instead of the original 256. 

8000 
small 

desktop 
system 

Intel® Core™ i7-

2600K CPU @ 
3.40GHz 

Titan 
Xp 

32 Torch 1.0.0 59 53.34 0.904 1.106 
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Sample 
rate System CPU GPU 

floating point 
precision SW version 

Full 
time 

Lenght 
of wave 

RT 
factor 

synth. 
time of 

1s comment 

[Hz]    [bits]  [s] [s]  [s] [*] 

8000 server 
system 

Intel® Xeon® 
Platinum 8167M 

CPU @ 2.00GHz 

V100 32 
Torch 

1.0.1.post2 
10 53.34 5.334 0.187 

 

8000 server 
system 

Intel® Xeon®  
Platinum 8167M 
CPU @ 2.00GHz 

V100 16* 
Torch 

1.0.1.post2 
8.6 53.34 6.202 0.161 

Only WaveGlow ran on 16 bits. 

22050 server 
system 

Intel® Xeon®  
Platinum 8167M 
CPU @ 2.00GHz 

V100 32 
Torch 

1.0.1.post2 
16.5 53.34 3.233 0.309 

 

22050* server 
system 

Intel® Xeon®  
Platinum 8167M 
CPU @ 2.00GHz 

------ 32 
Torch 

1.0.1.post2 
189 53.34 0.282 3.543 

CPU load was about 1000% (about 10 cores) 

 

The fastest environment was the system with V100 GPU. On this GPU the system was faster than real-time both on 22kHz and 8kHz and also on 32 and 16 

bits. The older GPUs do not support some matrix operations, which cause the slower than real-time operation.  We compared the V100 speed to an NVIDIA 

RTX 2080 GPU and had similar values. Coloring of RT factor: red: slowest/yellow: realtime/green: fastest 
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Increased speed model description 
There are several collaborative AI system scenarios where the good quality is required, but the wide 

spectral range is not necessary, the regular telephony range is enough (300 - 3400Hz). State-of-the-art 

systems give solutions to 16kHz or 22kHz sample rates. Next to quality the speed of inference time is 

also important. The real-time speech generation in a multichannel system is currently not cost 

effective, so increasing the speed of models is required. For a lot of solutions the lower sample rate is 

acceptable, but the current end-to-end systems do not have this kind of optimized codes. Those 

systems are hyper-optimized for better quality. 

Description of narrow band audio 
The 16kHz and 22kHz audio is well representable with 80 Mel channels with 256 hop size (16ms @ 

16000Hz). The 8kHz audio requires less channels.  Figure 1 shows the original 80 Mel channels. If we 

use the same channel number on 8kHz sample rate, the resolution is too detailed (Figure 2), the 

calculation time would be same for one frame.  

  

 

Figure 1: 80 Mel filters 0-8000Hz 
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Figure 2: 80 Mel filters 0-4000Hz 

In order to reach the same quality at 8KHz for the lower band (0-4KHz) than for 16KHz, 62 Mel channels 

is sufficient (Figure 3).  

 

Figure 3: 62 Mel filters 0-4000Hz 

The 62 channels are almost same than the lower 62 channels of the 80 Mel channel at 16 kHz. The 

relation of the channels is shown in Figure 4. The light curve shows the 80 Mel channel @ 16kHz, the 

dark curve shows the 64 Mel channels @ 8kHz. 
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Figure 4: Compatibility of 62 and 80 Mel filters 

 

Modified WaveGlow 
 

The WaveGlow model requires a lot of calculation. Fewer Mel channels give faster speed during 

training and inference time. The original WaveGlow is not prepared for different number of Mel 

channels, a small code modification is required. Calling  the TacotronSTFT function in class Mel2Samp 

init function does not contain the n_mel_channels parameter. The modified code is shown at the end 

of this document. 

The other method to increase the speed of WaveGlow inference mode is using fewer WaveNet (WN) 

layers. The calculation time of WN layers is the largest part of the full calculation time. The original 

publication contains 8 layers, but for 62 Mel channels WaveGlow with 7 layers also properly works. 

The original paper of WaveGlow was published with 512 WN channels. (It is not the same as Mel 

channels). It is not required on 8 kHz, 256 WN channels is enough for the same quality. The original 

authors later published a model on 22kHz which use only 256 WN channels, so decreasing of WN 

channels is widely supported. 
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Measurement results of training procedures of increased speed model 

variants  
The decreased sample rate allows the reduction of the Tacotron2 model, too. The method is based on 

hyper parameter optimization. The source code was the same as the published code 

(https://github.com/NVIDIA/tacotron2). The stopping criteria is based on validation loss. Next to 

validation loss the attention model was also observed. Distributed training was used and the typical 

batch size was 80 per GPU, so there were 640 sentences. A typical training process took about 12-16 

hours (on 8x V100). 

Test training environment 
The test environment was a server configuration with the following main components: 

 GPU: NVIDIA Tesla V100 (16 GB) 

 CPU: 2.0 GHz Intel® Xeon® Platinum 8167M 

 Number of GPUs: 8 

 Number of CPU’s cores: 52 

 System memory: 768 Gbyte 

 OS: Ubuntu 16.04 

Training and validation dataset 
The training dataset was LJSpeech 1.1: 

From: https://keithito.com/LJ-Speech-Dataset: „This is a public domain speech dataset 

consisting of 13,100 short audio clips of a single speaker reading passages from 7 non-

fiction books. A transcription is provided for each clip. Clips vary in length from 1 to 

10 seconds and have a total length of approximately 24 hours.  

The texts were published between 1884 and 1964, and are in the public domain. The 

audio was recorded in 2016-17 by the LibriVox project and is also in the public 

domain”.   

Source of dataset: https://keithito.com/LJ-Speech-Dataset/ 

The dataset was cut into three pieces: training, validation and test set. We used the separation as in 

the tacotron2 source: https://github.com/NVIDIA/tacotron2/tree/master/filelists 

Hyperparameters 
Because of big computing requirements we manually changed the hyperparameters. There were 10 

different configurations and 12 training procedures. There was a configuration (ljspeech-62-d512) 

which was examined on three different environments.  

The following tables (Table 7 - 16) contain the main parameters of Tacotron2 models. The changed 

parameters were highlighted with bold. 

  

https://github.com/NVIDIA/tacotron2
https://keithito.com/LJ-Speech-Dataset
https://librivox.org/
https://keithito.com/LJ-Speech-Dataset/
https://github.com/NVIDIA/tacotron2/tree/master/filelists
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Table 7: Tacotron2 parameters (ljspeech-80-d1024) 

ljspeech-80-d1024 Name of parameter Value of parameter 

 sampling_rate 8000  

filter_length 512 

hop_length 128 

win_length 512 

n_mel_channels 80 

mel_fmin 0.0 

mel_fmax 4000.0 

decoder_rnn_dim 1024 

attention_rnn_dim 1024 

encoder_embedding_dim 512 

symbols_embedding_dim 512 

 

Table 8: Tacotron2 parameters (ljspeech-62-d1024) 

ljspeech-62-d1024 Name of parameter Value of parameter 

 sampling_rate 8000  

filter_length 512 

hop_length 128 

win_length 512 

n_mel_channels 62 

mel_fmin 0.0 

mel_fmax 4000.0 

decoder_rnn_dim 1024 

attention_rnn_dim 1024 

encoder_embedding_dim 512 

symbols_embedding_dim 512 

 

Table 9: Tacotron2 parameters (ljspeech-62-d512) 

ljspeech-62-d512 Name of parameter Value of parameter 

 sampling_rate 8000  

filter_length 512 

hop_length 128 

win_length 512 

n_mel_channels 62 

mel_fmin 0.0 

mel_fmax 4000.0 

decoder_rnn_dim 512 

attention_rnn_dim 512 

encoder_embedding_dim 512 

symbols_embedding_dim 512 
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Table 10: Tacotron2 parameters (ljspeech-62-d512-e256) 

ljspeech-62-d512-e256 Name of parameter Value of parameter 

 sampling_rate 8000  

filter_length 512 

hop_length 128 

win_length 512 

n_mel_channels 62 

mel_fmin 0.0 

mel_fmax 4000.0 

decoder_rnn_dim 512 

attention_rnn_dim 512 

encoder_embedding_dim 256 

symbols_embedding_dim 256 

 

Table 11: Tacotron2 parameters (ljspeech-62-d384) 

ljspeech-62-d384 Name of parameter Value of parameter 

 sampling_rate 8000  

filter_length 512 

hop_length 128 

win_length 512 

n_mel_channels 62 

mel_fmin 0.0 

mel_fmax 4000.0 

decoder_rnn_dim 384 

attention_rnn_dim 384 

encoder_embedding_dim 512 

symbols_embedding_dim 512 

 

Table 12: Tacotron2 parameters (ljspeech-62-d512-a768) 

ljspeech-62-d512-a768 Name of parameter Value of parameter 

 sampling_rate 8000  

filter_length 512 

hop_length 128 

win_length 512 

n_mel_channels 62 

mel_fmin 0.0 

mel_fmax 4000.0 

decoder_rnn_dim 512 

attention_rnn_dim 768 

encoder_embedding_dim 512 

symbols_embedding_dim 512 
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Table 13: Tacotron2 parameters (ljspeech-62-d640) 

ljspeech-62-d640 Name of parameter Value of parameter 

 sampling_rate 8000  

filter_length 512 

hop_length 128 

win_length 512 

n_mel_channels 62 

mel_fmin 0.0 

mel_fmax 4000.0 

decoder_rnn_dim 640 

attention_rnn_dim 640 

encoder_embedding_dim 512 

symbols_embedding_dim 512 

 

Table 14: Tacotron2 parameters (ljspeech-62-d512-e384) 

ljspeech-62-d512-e384 Name of parameter Value of parameter 

 sampling_rate 8000  

filter_length 512 

hop_length 128 

win_length 512 

n_mel_channels 62 

mel_fmin 0.0 

mel_fmax 4000.0 

decoder_rnn_dim 512 

attention_rnn_dim 512 

encoder_embedding_dim 384 

symbols_embedding_dim 384 

 

Table 15: Tacotron2 parameters (ljspeech-62-d512-e640) 

ljspeech-62-d512-e640 Name of parameter Value of parameter 

 sampling_rate 8000  

filter_length 512 

hop_length 128 

win_length 512 

n_mel_channels 62 

mel_fmin 0.0 

mel_fmax 4000.0 

decoder_rnn_dim 512 

attention_rnn_dim 512 

encoder_embedding_dim 640 

symbols_embedding_dim 640 
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Table 16: Tacotron2 parameters (ljspeech-62-d512-p384) 

ljspeech-62-d512-p384 Name of parameter Value of parameter 

 sampling_rate 8000  

filter_length 512 

hop_length 128 

win_length 512 

n_mel_channels 62 

mel_fmin 0.0 

mel_fmax 4000.0 

decoder_rnn_dim 512 

attention_rnn_dim 512 

encoder_embedding_dim 512 

symbols_embedding_dim 512 

postnet_embedding_dim 384 

 

Results 

Validation loss 

At the base model we modified only the sample rate and the connected hop, window and filter length. 

They are not signed by bold, they are the same at all models. 

The base model contains 1024 LSTM cells in the decoder but the number of Mel channels were 

decreased so less cells are enough to model the data. The 384, 512, 640 LSTM cells were investigated, 

and the 512 LSTM cells was the most successful. The size of the encoder is independent of the 

decoder’s Mel channel number, and the training showed that changing the encoder size cause worse 

performance. The changing of validation loss is presented in Figure Hiba! A hivatkozási forrás nem 

található..  
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-

 

Figure 5: Validation values of the different models 
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Attention mechanism  

Between the encoder and the decoder the attention mechanism supports the connection. The state 

of the attention mechanism is observable via alignment figures. They show which decoder timesteps 

use which encoder timesteps. The following figures show the alignments of a training process at three 

different validations. At the first one (Fig. 6) there is no connection between encoder and decoder, at 

the second one it started to form (Fig. 7). At the third one (Fig. 8) the connection appears as a diagonal 

curve. 

 

Figure 6: The attention of ljspeech-62-d512 @8000 iterations 

 

Figure 7: The attention of ljspeech-62-d512 @9000 iterations 
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Figure 8: The attention of ljspeech-62-d512 @10000 iterations 

The table below shows the summarized performance of trainings. The Alignment values show the 

number of iterations where the diagonal curves started to form on alignment pictures. In comments 

that training procedures are signed where the form of curve of validation loss suggests the validation 

loss might not be the best value, a bigger patience of early stopping may allow more training. 

Table 17: The summarized performance of trainings 

 Alignment 
Best 

validation 
value 

@step Comment 
Number 
of GPUs 

BatchSize 

ljspeech-80-d1024 6000    8 80 

ljspeech-62-d1024 7000    8 80 

ljspeech-62-d512 9000 0.3078 19000  8 80 

ljspeech-62-d512-e256 15000    8 80 

ljspeech-62-d384 17000 0.3135 23000 may need more training 8 80 

ljspeech-62-d512-a768 10000    8 80 

ljspeech-62-d640 9000 0.3168 22000 may need more training 8 80 

ljspeech-62-d512-e384 8000    8 80 

ljspeech-62-d512-e640 >20000   no attention curve 8 80 

ljspeech-62-d512-p384 11000    8 80 

ljspeech-62-d512-
1TitanXp 

18000 0.3051 58000 
 

1 64 

ljspeech-62-d512-
2TitanX 

13000 0.3365 16000 
may need more training 

2 64 

At some models, where the number of LSTM cells was lower than at the basic model, the memory 

requirement was smaller, so we could increase the batch size, but we left it on the same value on 8 

GPUs systems. It was beneficial because the same iteration steps meant the same epochs. 

The speed of learning, the value of validation loss and the alignment values show that the best model 

is ljspeech-62-d512.  
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Proposed model training environment description (GPU based) 

Training on different GPUs 
The training of a DNN is a long procedure, so more GPUs generally mean less training time. At 

Tacotron2 it is true, in our tests the model training was the fastest on a 8 GPUs system  and the slowest 

on a single GPU.  

The figure below shows the validation loss of the 8 GPU system. It reached the best value at 19000 

iterations. It took 10h50 min time. The batch size of distributed training was 8x80 = 640 sentences 

 

Figure 9: Validation loss on 8xV100 GPUs 

The question is that smaller systems can be efficient enough? Can they reach same loss value? We ran 

the same training on a single GPU system. The GPU was an NVidia Titan Xp. Because it contains less 

memory than the V100 (12 Gbyte instead of 16 Gbyte), the batch size was decreased to 64. It reached 

the best value after 58000 iterations. The figure below shows the validation loss of training. The 

alignment became good after 18000 iterations. The best validation loss was 0.3051 which is practically 

the same as the 8 GPUs system’s validation loss (0.3078). It took about 5.4 times more than with 8 

GPUs (58h30min). Depending on pricing of GPUs the single GPU environment would be cost effective, 

if the training time is less important. 

 

Figure 10: Validation loss on a single Titan Xp GPU 
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The other option is to use more GPUs, but less than 8. The third option was two Nvidia Titan X boards 

in distributed training. As expected it was faster than one GPU, but slower than 8 GPU training. The 

batch size was 2x64=128 sentences. It reached the proper alignment after 13000 iterations. In our 

experiment the best validation loss was only 0.3365, but the tendency was good, so it would reach 

better values. A technical difficulty caused the end of this training. From tendency and compared with 

the single GPU training with the same epoch, the two GPU distributed training may provide the same 

or better results than a single GPU. The 2 GPU training reached the 16000 iterations after 16 hours. 

 

Figure 11: Validation loss on two Titan X GPUs 
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Parameters of proposed models 

Tacotron2 

Source:  

https://github.com/NVIDIA/tacotron2 

Parameters (hparam.py) 
import tensorflow as tf 

from text import symbols 

 

def create_hparams(hparams_string=None, verbose=False): 

    """Create model hyperparameters. Parse nondefault from given string.""" 

 

    hparams = tf.contrib.training.HParams( 

        ################################ 

        # Experiment Parameters        # 

        ################################ 

        epochs=1500, 

        iters_per_checkpoint=1000, 

        seed=1234, 

        dynamic_loss_scaling=True, 

        fp16_run=True, 

        distributed_run=True, 

        dist_backend="nccl", 

        dist_url="tcp://localhost:54321", 

        cudnn_enabled=True, 

        cudnn_benchmark=False, 

        ignore_layers=['embedding.weight'], 

 

        ################################ 

        # Data Parameters             # 

        ################################ 

        load_mel_from_disk=False, 

        training_files='filelists/ljs_audio_text_train_filelist.txt', 

        validation_files='filelists/ljs_audio_text_val_filelist.txt', 

        text_cleaners=['english_cleaners'], 

 

        ################################ 

        # Audio Parameters             # 

        ################################ 

        max_wav_value=32768.0, 

        sampling_rate=8000, 

        filter_length=512, 

        hop_length=128, 

        win_length=512, 

        n_mel_channels=62, 

        mel_fmin=0.0, 

        mel_fmax=4000.0, 

 

        ################################ 

        # Model Parameters             # 

        ################################ 

        n_symbols=len(symbols), 

        symbols_embedding_dim=512, 

 

        # Encoder parameters 

        encoder_kernel_size=5, 

        encoder_n_convolutions=3, 

        encoder_embedding_dim=512, 

https://github.com/NVIDIA/tacotron2
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        # Decoder parameters 

        n_frames_per_step=1,  # currently only 1 is supported 

        decoder_rnn_dim=512, # 1024 

        prenet_dim=256, 

        max_decoder_steps=1000, 

        gate_threshold=0.5, 

        p_attention_dropout=0.1, 

        p_decoder_dropout=0.1, 

 

        # Attention parameters 

        attention_rnn_dim=512, #1024 

        attention_dim=128, 

 

        # Location Layer parameters 

        attention_location_n_filters=32, 

        attention_location_kernel_size=31, 

 

        # Mel-post processing network parameters 

        postnet_embedding_dim=512, 

        postnet_kernel_size=5, 

        postnet_n_convolutions=5, 

 

        ################################ 

        # Optimization Hyperparameters # 

        ################################ 

        use_saved_learning_rate=False, 

        learning_rate=1e-3, 

        weight_decay=1e-6, 

        grad_clip_thresh=1.0, 

        batch_size=80, 

        mask_padding=True  # set model's padded outputs to padded values 

    ) 

 

    if hparams_string: 

        tf.logging.info('Parsing command line hparams: %s', hparams_string) 

        hparams.parse(hparams_string) 

 

    if verbose: 

        tf.logging.info('Final parsed hparams: %s', hparams.values()) 

 

    return hparams 

 

WaveGlow 

Source 

https://github.com/NVIDIA/waveglow 

Parameters (config.json) 
{ 

    "train_config": { 

        "fp16_run": true, 

        "output_directory": "./out", 

        "log_directory": "./log", 

        "epochs": 100000, 

        "learning_rate": 1e-4, 

        "sigma": 1.0, 

        "iters_per_checkpoint": 2000, 

        "batch_size": 16, 

https://github.com/NVIDIA/waveglow
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        "seed": 1234, 

        "checkpoint_path": "" 

    }, 

    "data_config": { 

        "training_files": "train_files.txt", 

        "segment_length": 16768, 

        "sampling_rate": 8000, 

        "filter_length": 512, 

        "hop_length": 128, 

        "win_length": 512, 

        "mel_fmin": 0.0, 

        "mel_fmax": 4000.0 

    }, 

    "dist_config": { 

        "dist_backend": "nccl", 

        "dist_url": "tcp://localhost:54321" 

    }, 

 

    "waveglow_config": { 

        "n_mel_channels": 62, 

        "n_flows": 12, 

        "n_group": 8, 

        "n_early_every": 4, 

        "n_early_size": 2, 

        "WN_config": { 

            "n_layers": 7, 

            "n_channels": 256, 

            "kernel_size": 3 

        } 

    } 

} 

 

Modified function in mel2samp.py 

In order to train WaveGlow with 62 Mel channels you have to modify the source code, because the 

Mel spectrum calculation does not get this parameter. The default value is 80. 

The modified line is emphasized by bold font. 

... 

class Mel2Samp(torch.utils.data.Dataset): 

    """ 

    This is the main class that calculates the spectrogram and returns the 

    spectrogram, audio pair. 

    """ 

    def __init__(self, training_files, segment_length, filter_length, 

                 hop_length, win_length, sampling_rate, mel_fmin, 

mel_fmax): 

        self.audio_files = files_to_list(training_files) 

        random.seed(1234) 

        random.shuffle(self.audio_files) 

        self.stft = TacotronSTFT(filter_length=filter_length, 

                                 hop_length=hop_length, 

                                 win_length=win_length, 

                                 sampling_rate=sampling_rate, 

                                 n_mel_channels=62, 

                                 mel_fmin=mel_fmin, mel_fmax=mel_fmax) 

        self.segment_length = segment_length 

        self.sampling_rate = sampling_rate 

  



- 25-  

References 
Jonathan Shen, R. P.-R. (2017). Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram 

Predictions. Forrás: https://arxiv.org/abs/1712.05884 

Ryan Prenger, R. V. (2018). WaveGlow: A Flow-based Generative Network for Speech Synthesis. 

Forrás: https://arxiv.org/abs/1811.00002 

 

 


